汽车加油行驶问题全网最详细(动态规划+画图)

2024-08-31 03:32

本文主要是介绍汽车加油行驶问题全网最详细(动态规划+画图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

给定一个N*N的网络,左上角记为起点S,坐标为(1,1),坐标轴方向及距离标识见图。一辆汽车从起点S出发驶向右下角终点(N,N)。在部分网格交叉点,设置了油库,可供汽车在行驶途中,为其加油。汽车在行驶途中需遵守如下规则:

  • 1.汽车只能沿着网格边行驶,装满油后只能行驶K条网格边。出发时已装满油,起点和终点不设油库
  • 2.当汽车行驶经过一条网格边时,若其X坐标或Y坐标减小,则需付费B,否则免付费用
  • 3.汽车行驶过程中若遇到油库,则需加满油并付油费A
  • 4.在需要时可在网格点增设油库,并付增设油库费用C(不含A)

5.以上N=9,K《3,A,B,C均为正整数,可自行设置数值(值不能相同)

https://i-blog.csdnimg.cn/blog_migrate/708164ff5921b1e88d43d469f119a62b.png ​​图1-1

求行驶到坐标(9,9)的费用最小

本题暂且输入参数 N = 9,K = 3,A = 2,B = 2,C = 1

动态规划原理:

       最优性原理:多阶段决策过程的最优决策序列具有如下性质:无论决策过程的初始状态和初始决策是什么,其余的决策都必须相对于初始决策所产生的当前状态,构成一个最优决策序列。

        图1-2

解题步骤

  1. 找递推表达式
  2. 填写递推表格

分析:

已知起点(1,1),终点(9,9),设(x,y)为当前汽车所到达的点,f是形为(9+1,9+1,2)的三维表(注释:9+1的原因是数组下标以0为起点,本题起点为(1,1)点,为了方便分析,引入占位符,数组下标从1开始计数,本文所有数组都以1为起点,后面不重复申明),path变量为(9+1,9+1,2)的三维表,用于保存行驶进入当前节点的前向节点表,用于路径回溯。

f[x][y][0]表示坐标(1,1)到坐标(x,y)汽车所花的最少费用

f[x][y][1]表示汽车行驶到坐标(x,y)后还能行驶的网格边数

最终总费用:即求f[N][N][0]

并最后通过path表回溯路径—》找到最短路径

 图 1-3

由图1-3可知汽车运动到蓝色的点,有四种运动方式,分别是从上到下,从左到右,从右到左,从下到上,需要找出的是,所花费用最少的点作为当前蓝色点的前向节点。设蓝色节点费用为g,则可得递推表达式

蓝色站点费用 g = 加油费用 或 (建立油站 加上 加油费用)

最小费用 f[x][y][0] = min(f[x-1][y][0]+g, f[x+1][y][0]+g, f[x][y-1][0]+g, f[x][y+1][0])

使用固定随机种子初始地图1-4(红色点表示加油站)

                 图1-4

用递推表达式填表并找规律(熟手可跳过此流程)

                                                        图1-5

import numpy as np
import random
from numpy.core.fromnumeric import reshape
import matplotlib.pyplot as pltrandom.seed(10)
INF = 10000#输入参数
def find_path_and_fee(N = 9, K = 3, A = 2, B = 2, C = 1):    seed = lambda : 1 if random.randint(0, 11) % 4 == 0 else 0grid = np.zeros((N + 1, N + 1), dtype = int)oil_x, oil_y = [], []for i in range(N):for j in range(N):grid[i+1][j+1] = seed()if grid[i+1][j+1] == 1:oil_x.append(i+1)oil_y.append(j+1)f = np.zeros((N + 1, N + 1, 2), dtype = int)for i in range(1, N+1):for j in range(1, N+1):f[i][j][0] = INFf[i][j][1] = K#4个方向s = [[-1, 0, 0], [0, -1, 0], [1, 0, B], [0, 1, B]]f[1][1][0], f[1][1][1] = 0, Ktempx, tempy = 0, 0path = np.zeros((N + 1, N + 1, 2), dtype= int)for x in range(1, N + 1):for y in range(1, N + 1):if x == 1 and y == 1: continueminmoney, minstep, tmpmoney, tmpstep = INF, 0, 0, 0for i in range(4):if x + s[i][0] < 1 or x + s[i][0] > N or y + s[i][1] < 1 or y + s[i][1] > N: continuetmpmoney = f[x+s[i][0]][y+s[i][1]][0] + s[i][2]tmpstep = f[x+s[i][0]][y+s[i][1]][1] - 1if grid[x][y] == 1: tmpmoney += Atmpstep = Kif grid[x][y] == 0 and tmpstep == 0 and (x != N or y != N):tmpmoney += A + Ctmpstep = Kif minmoney > tmpmoney:minmoney = tmpmoneyminstep = tmpsteptempx = x + s[i][0]tempy = y + s[i][1]if(f[x][y][0] > minmoney):f[x][y][0] = minmoneyf[x][y][1] = minsteppath[x][y][0] = tempxpath[x][y][1] = tempy#回溯找到最佳路径re_path_x, re_path_y = [], []x, y, tmp = N, N, 0while ((x != 1) or (y != 1)):re_path_x.append(x)re_path_y.append(y)tmp = xx = path[x][y][0]y = path[tmp][y][1]re_path_x.append(x)re_path_y.append(y)return N, oil_x, oil_y, re_path_x, re_path_y#绘制最佳路径图
def draw_pic(N, oil_x, oil_y, re_path_x, re_path_y):plt.grid(linestyle=":", color="r")ax = plt.gca()                       #获取到当前坐标轴信息ax.xaxis.set_ticks_position('top')   #将X坐标轴移到上面ax.invert_yaxis()                    #反转Y坐标轴plt.xticks([x for x in range(1, N+1)])plt.xlabel("x axis")plt.yticks([x for x in range(1, N+1)])plt.ylabel("y axis")plt.scatter(oil_x, oil_y, color="r", label="oil station")    plt.plot(re_path_x, re_path_y, ls="-.", lw=2, c="b", label="plot figure")plt.legend(loc="lower left")plt.show()N, oil_x, oil_y, re_path_x, re_path_y = find_path_and_fee()
draw_pic(N, oil_x, oil_y, re_path_x, re_path_y)

运行代码

绘制出最佳路径(蓝色虚线为最佳路径,红色点为加油站)

这篇关于汽车加油行驶问题全网最详细(动态规划+画图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122766

相关文章

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明