用OpenCV实现FAST算法目标跟踪

2024-08-30 14:28

本文主要是介绍用OpenCV实现FAST算法目标跟踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击下方卡片,关注“小白玩转Python”公众号主要工作:提取特征(角点)并使用FAST算法跟踪对象:OpenCV,Python

OpenCV中有多种特征提取算法可供使用,但其中一种名为FAST算法的,对于实时计算机视觉应用来说非常有用。大多数特征提取和角点检测方法在提取特征方面表现良好,但它们大多数并不适合实时应用。

FAST算法非常适合实时计算机视觉任务。在本文中,我将解释FAST算法的工作原理,它的优点和缺点,并最终创建一个使用FAST算法的对象跟踪器。

e636087bb3877ab0950597840a9b33ab.png

FAST算法的工作原理是什么?

FAST算法相对简单。

  1. FAST算法选择一个随机像素,并在该像素周围画一个圆(半径:3像素),其圆周为16像素。

  2. 如果在16像素中有至少12个连续点的强度比中心像素亮或暗(加上阈值),那么这个中心像素就被视为兴趣点(角点)。

  3. 为了加快这个过程,算法首先检查圆周上的4个像素。至少有3个像素必须都比中心像素暗或亮,如果它们不是,该点就不能是兴趣点,因为正如我之前所说,至少有12个连续像素必须更暗或更亮。

查看下面的图片,它准确地展示了我尝试解释的内容。

4a82caed5e881629823b42ad5cbad2a2.jpeg

FAST算法的优点和缺点

  • 优点:FAST算法非常快。如果你将它与其他特征提取和角点检测算法进行比较,你会看到差异。实际上,我在另一篇博客文章中比较了ORB、FAST和SIFT算法,结果显示FAST算法比其他算法快(博客文章链接)

  • 缺点:FAST算法对噪声敏感,因此在噪声图像中可能会检测到错误的角点。它不是尺度不变性的,这意味着如果图像的大小改变,它可能不会很好地工作。

结论

选择FAST算法为你的任务完全取决于你的目的。如果你需要更高的帧率,并且不太关心提取点的准确性,你可以考虑使用FAST算法。我有一篇关于这些算法比较以及如何选择的博客文章,我推荐你阅读这个链接:

https://medium.com/@siromermer/sift-vs-orb-vs-fast-performance-comparison-of-feature-extraction-algorithms-d8993c977677

986b7f62e29c28946165d5f718bf1614.png

代码/使用FAST算法跟踪对象

有两个主要步骤:

  1. 首先,用户通过使用鼠标左键在目标对象周围画矩形来定义目标对象。然后使用FAST算法从这个目标对象(而不是整幅图像)中提取特征。

  2. 接下来,对于每一帧,使用FAST算法提取特征。将目标图像的特征与每一帧中的特征进行比较。如果有匹配,就在特征位置画一个圆圈,通过这样做来跟踪对象。

  • 导入库

import cv2
import numpy as np 
import matplotlib.pyplot as plt
import time
  • 使用鼠标通过在其周围画矩形来选择目标对象

# Path to video  
video_path=r"videos/fish-video.mp4"
video = cv2.VideoCapture(video_path)# read only the first frame for drawing a rectangle for the desired object
ret,frame = video.read()# I am giving  big random numbers for x_min and y_min because if you initialize them as zeros whatever coordinate you go minimum will be zero 
x_min,y_min,x_max,y_max=36000,36000,0,0def coordinat_chooser(event,x,y,flags,param):global go , x_min , y_min, x_max , y_max# when you click the right button, it will provide coordinates for variablesif event==cv2.EVENT_RBUTTONDOWN:# if current coordinate of x lower than the x_min it will be new x_min , same rules apply for y_min x_min=min(x,x_min) y_min=min(y,y_min)# if current coordinate of x higher than the x_max it will be new x_max , same rules apply for y_maxx_max=max(x,x_max)y_max=max(y,y_max)# draw rectanglecv2.rectangle(frame,(x_min,y_min),(x_max,y_max),(0,255,0),1)"""if you didn't like your rectangle (maybe if you made some misscliks),  reset the coordinates with the middle button of your mouseif you press the middle button of your mouse coordinates will reset and you can give a new 2-point pair for your rectangle"""if event==cv2.EVENT_MBUTTONDOWN:print("reset coordinate  data")x_min,y_min,x_max,y_max=36000,36000,0,0cv2.namedWindow('coordinate_screen')
# Set mouse handler for the specified window, in this case, "coordinate_screen" window
cv2.setMouseCallback('coordinate_screen',coordinat_chooser)while True:cv2.imshow("coordinate_screen",frame) # show only first frame k = cv2.waitKey(5) & 0xFF # after drawing rectangle press ESC   if k == 27:cv2.destroyAllWindows()break

3332dad83eb3bfd8e19e05309e055550.png

  • 从目标对象中提取特征(不是从整幅图像中)

# take region of interest ( take inside of rectangle )
roi_image=frame[y_min:y_max,x_min:x_max]# convert roi to grayscale, SIFT Algorithm works with grayscale images
roi_gray=cv2.cvtColor(roi_image,cv2.COLOR_BGR2GRAY) # Initialize the FAST detector and BRIEF descriptor extractor
fast = cv2.FastFeatureDetector_create(threshold=20)
brief = cv2.xfeatures2d.BriefDescriptorExtractor_create()# detect keypoints
keypoints_1 = fast.detect(roi_gray, None)
# descriptors
keypoints_1, descriptors_1 = brief.compute(roi_gray, keypoints_1)# draw keypoints for visualizing
keypoints_image = cv2.drawKeypoints(roi_image, keypoints_1, outImage=None, color=(0, 255, 0))
# display keypoints
plt.imshow(keypoints_image,cmap="gray")

da84ba697d18aa0927f8853ef0cb0ceb.png

  • 使用FAST算法跟踪对象

# matcher object
bf = cv2.BFMatcher()# Variables for FPS calculation
frame_count = 0
start_time = time.time()while True :# reading video ret,frame=video.read()if ret:# convert frame to gray scale frame_gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)# Detect keypoints using FASTkeypoints_2 = fast.detect(frame_gray, None)# Compute descriptors using BRIEFkeypoints_2, descriptors_2 = brief.compute(frame_gray, keypoints_2)"""Compare the keypoints/descriptors extracted from the first frame(from target object) with those extracted from the current frame."""if descriptors_2 is  not None:matches =bf.match(descriptors_1, descriptors_2)for match in matches:# queryIdx gives keypoint index from target imagequery_idx = match.queryIdx# .trainIdx gives keypoint index from current frame train_idx = match.trainIdx# take coordinates that matchespt1 = keypoints_1[query_idx].pt# current frame keypoints coordinatespt2 = keypoints_2[train_idx].pt# draw circle to pt2 coordinates , because pt2 gives current frame coordinatescv2.circle(frame,(int(pt2[0]),int(pt2[1])),5,(255,0,0),-1)# Calculate and display FPSframe_count += 1elapsed_time = time.time() - start_timefps = frame_count / elapsed_timecv2.putText(frame, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)cv2.imshow("coordinate_screen",frame) k = cv2.waitKey(5) & 0xFF # after drawing rectangle press esc   if k == 27:cv2.destroyAllWindows()breakelse:breakvideo.release()
cv2.destroyAllWindows()

6e41383259cbd809a8d4e26bb3f98f7c.png

·  END  ·

🌟 想要变身计算机视觉小能手?快来「小白玩转Python」公众号!

回复Python视觉实战项目,解锁31个超有趣的视觉项目大礼包!🎁

4def2970c3a54e339e22c09f6b39e41d.png

本文仅供学习交流使用,如有侵权请联系作者删除

这篇关于用OpenCV实现FAST算法目标跟踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121078

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的

JS 实现复制到剪贴板的几种方式小结

《JS实现复制到剪贴板的几种方式小结》本文主要介绍了JS实现复制到剪贴板的几种方式小结,包括ClipboardAPI和document.execCommand这两种方法,具有一定的参考价值,感兴趣的... 目录一、Clipboard API相关属性方法二、document.execCommand优点:缺点:

nginx部署https网站的实现步骤(亲测)

《nginx部署https网站的实现步骤(亲测)》本文详细介绍了使用Nginx在保持与http服务兼容的情况下部署HTTPS,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录步骤 1:安装 Nginx步骤 2:获取 SSL 证书步骤 3:手动配置 Nginx步骤 4:测