OpenCV与EmguCV中的图像轮廓提取

2024-08-30 14:18

本文主要是介绍OpenCV与EmguCV中的图像轮廓提取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/u013162930/article/details/51941531

轮廓是图像中表示边界的一系列点的集合。

虽然边缘检测算法可以根据像素间的差异检查出轮廓边界的像素,但是它并没有把轮廓做为一个整体表示出来。所以下一步工作是把这些边缘检测出来的像素组装成轮廓。
openCV中可以用findContours()函数来从二值图像中提取轮廓。
openCV中一般用序列来存储轮廓信息。序列中的每一个元素是曲线中一个点的位置。

函数findContours()从二值图像中寻找轮廓。findContours()处理的图像可以是Canny()后得到的有边缘像素的的图像,也可以是Threshold()后得到的图像,这时的边缘是正负区域之间的边界。
在介绍函数原型之前,我们还需要简单了解下轮廓树的概念。openCV允许得到的轮廓被聚合成一个轮廓树,从而把包含的关系编码到轮廓树中。轮廓中直接包含的轮廓成为了它们的子节点。以此类推。

OpenCV3.0中的函数原型如下:

void findContours(InputOutArray image, OutputArrayOfArrays contours,  OutputArray hierarchy, int mode, int method, Point offset = Point())
  • 第一个参数,InputOutArray类型的image,源图像,应为8位单通道的Mat类型。图像的非零像素被认为是1,0像素被保留为0。此函数会在提取图线轮廓的同时修改图像的内容。
  • 第二个参数,OutputArrayOfArrays类型的contours。函数调用后的运算结果保存在这里,即为检测到的轮廓,每一个轮廓存储为一个点向量,即用Point类型的vector表示。
  • 第三个参数,OutputArray类型的hierarchy,可选的输出向量,包含图像的拓扑信息。其作为轮廓数量的表示,包含了许多元素。每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0]~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号。如果没有对应的项,该hierarchy[i]值对应的设为负数。
  • 第四个参数,int类型的mode,轮廓检索模式。
            RETR_EXTERNAL - 只提取最外层的轮廓 。对于所有轮廓设置hierarchy[i][2] = hierarchy[i][3] = -1。
            RETR_LIST - 提取所有轮廓,并且放置在 list 中 
            RETR_CCOMP - 提取所有轮廓,并且将其组织为两层的 hierarchy: 顶层为连通域的外围边界,次层为洞的内层边界。 
            RETR_TREE - 提取所有轮廓,并且重构嵌套轮廓的全部 hierarchy 
  • 第五个参数,int类型的method,轮廓逼近的方法。           
            CHAIN_APPROX_NONE - 将所有点由链码形式翻译(转化)为点序列形式 
            CHAIN_APPROX_SIMPLE - 压缩水平、垂直和对角分割,即函数只保留末端的象素点; 
            CHAIN_APPROX_TC89_L1,  CHAIN_APPROX_TC89_KCOS - 应用 Teh-Chin 链逼近算法。
  • 第六个参数,Point类型的offset,每个轮廓点的可选偏移量,有默认值Point()当轮廓是从图像 ROI 中提取出来的时候,这个参数就可以排上用场了,因为可以从整个图像上下文来对轮廓做分析。

eg。
Mat srcImage = imread("M:/图像处理实验/轮廓提取/test-1.bmp",1);
cvtColor(srcImage, srcImage, COLOR_BGR2GRAY);
adaptiveThreshold(srcImage,srcImage,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY, 35, 10);
Mat result = Mat::zeros(srcImage.size(), CV_8UC3);  
srcImage.copyTo(result);
Canny(srcImage,srcImage,3,6,3);
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours(srcImage, contours, hierarchy, CV_RETR_TREE, CHAIN_APPROX_SIMPLE);
int areaMin  = srcImage.cols * srcImage.rows;
for (int i = 0; i < contours.size(); i++ ){double area = contourArea(((contours)._Myfirst)[i]);if (area > srcImage.rows * srcImage.cols/3){//选取满足条件的最小的面积。认为改轮廓为答题卡的边框。if (areaMin > area){areaMin = area;}else{continue;}double area = contourArea(((contours)._Myfirst)[i]);Scalar color(rand() & 255, rand() & 255, rand() & 255);drawContours(result, contours, i, color, CV_FILLED, 8, hierarchy, 0, Point());}            
}
imwrite("M:/图像处理实验/轮廓提取/test-1-result.bmp", result);


以下为原图及轮廓提取后的结果:

EmguCV3.0中的函数原型如下:

Public Shared Sub FindContours(image As Emgu.CV.IInputOutputArray, contours As Emgu.CV.IOutputArray, hierarchy As Emgu.CV.IOutputArray, mode As Emgu.CV.CvEnum.RetrType, method As Emgu.CV.CvEnum.ChainApproxMethod, Optional offset As System.Drawing.Point = Nothing)
  • 第一个参数,Emgu.CV.IInputOutputArray类型的image,源图像。图像的非零像素被认为是1,0像素被保留为0。此函数会在提取图线轮廓的同时修改图像的内容。
  • 第二个参数,Emgu.CV.IOutputArray类型的contours。函数调用后的运算结果保存在这里,即为检测到的轮廓,每一个轮廓存储为一个点向量,即用Point类型的vector表示。
  • 第三个参数,Emgu.CV.IOutputArray类型的hierarchy,可选的输出向量,包含图像的拓扑信息。
  • 第四个参数,Emgu.CV.CvEnum.RetrType类型的mode,轮廓检索模式。
             Emgu.CV.CvEnum.RetrType.External - 只提取最外层的轮廓  。
             Emgu.CV.CvEnum.RetrType.List - 提取所有轮廓,并且放置在 list 中  
             Emgu.CV.CvEnum.RetrType.Ccomp  - 提取所有轮廓,并且将其组织为两层的 hierarchy: 顶层为连通域的外围边界,次层为洞的内层边界。  
            Emgu.CV.CvEnum.RetrType.Tree- 提取所有轮廓,并且重构嵌套轮廓的全部 hierarchy 
  • 第五个参数,Emgu.CV.CvEnum.ChainApproxMethod类型的method,轮廓逼近的方法。           
Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxNone - 将所有点由链码形式翻译(转化)为点序列形式  
             Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxSimple - 压缩水平、垂直和对角分割,即函数只保留末端的象素点;  
            Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxTC89L1, Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxTC89KCOS - 应用 Teh-Chin 链逼近算法。
  • 第六个参数,Point类型的offset,每个轮廓点的可选偏移量,有默认值。当轮廓是从图像 ROI 中提取出来的时候,这个参数就可以排上用场了,因为可以从整个图像上下文来对轮廓做分析。

eg。
Dim bkGrayWhite As New Gray(255)
Dim img As Image(Of Gray, Byte) = New Image(Of Gray, Byte)("M:\图像处理实验\轮廓提取\test-2.bmp")
Dim img_threshold As Image(Of Gray, Byte) = New Image(Of Gray, Byte)(img.Width, img.Height, bkGrayWhite)
Dim imgresult As Image(Of Rgb, Byte) = New Image(Of Rgb, Byte)(img.Width, img.Height, New Rgb(255, 255, 255))
img.CopyTo(img_threshold)
CvInvoke.AdaptiveThreshold(img_threshold, img, 255, CvEnum.AdaptiveThresholdType.MeanC, CvEnum.ThresholdType.Binary, 35, 10)
Dim imgCanny As Image(Of Gray, Byte) = New Image(Of Gray, Byte)(img.Width, img.Height, bkGrayWhite)
CvInvoke.Canny(img, imgCanny, 25, 25 * 2, 3)
Dim contours As Emgu.CV.Util.VectorOfVectorOfPoint = New Emgu.CV.Util.VectorOfVectorOfPoint()
Dim hierarchy As Emgu.CV.IOutputArray = New Image(Of Gray, Byte)(img.Width, img.Height, bkGrayWhite)
CvInvoke.FindContours(imgCanny,contours,hierarchy,Emgu.CV.CvEnum.RetrType.External,Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxSimple)
Dim areaMax As Integer = img.Width * img.HeightFor i = 0 To contours.Size - 1Dim area As Integer = CvInvoke.ContourArea(contours(i))'筛选轮廓面积大于三分之一整体图片面积的轮廓If area < areaMax / 3 ThenContinue ForEnd IfCvInvoke.DrawContours(imgresult, contours, i, New MCvScalar(0, 0, 0), 2, CvEnum.LineType.EightConnected, hierarchy, 2147483647)Next
imgresult.Save("M:\图像处理实验\轮廓提取\test-2-result.bmp")





这篇关于OpenCV与EmguCV中的图像轮廓提取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121055

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的:

Verybot之OpenCV应用二:霍夫变换查找圆

其实我是想通过这个程序来测试一下,OpenCV在Verybot上跑得怎么样,霍夫变换的原理就不多说了,下面是程序: #include "cv.h"#include "highgui.h"#include "stdio.h"int main(int argc, char** argv){cvNamedWindow("vedio",0);CvCapture* capture;i

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

ROS - C++实现RosBag包回放/提取

文章目录 1. 回放原理2. 回放/提取 多个话题3. 回放/提取数据包,并实时发布 1. 回放原理 #include <ros/ros.h>#include <rosbag/bag.h>#include <std_msgs/String.h>int main(int argc, char** argv){// 初始化ROS节点ros::init(argc, argv,