深度学习——LLM大模型分词

2024-08-30 11:52
文章标签 学习 深度 模型 llm 分词

本文主要是介绍深度学习——LLM大模型分词,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言

自从chatgpt出现,大模型的发展就进入了快车道,各种各样的大模型卷上天,作为一个在大模型时代的科研人,即使你不向前,也会被时代裹挟着向前,所以还是自己走快一点比较好,免得被后浪拍死在沙滩上。对于我而言,写文章更多的是对知识的总结和回顾,当然如果我的文章能够对你的学习有所帮助我也是挺开心的。

这篇文章主要参考B站上的这位大神的视频以及Huggingface上的总结
B站视频LLM分词
Huggingface Tokenizers

另外大家也可以通过这个分词网站来玩一下分词:https://tiktokenizer.vercel.app
这里放上一张思维导图,方便大家理解整篇文章的脉络。
在这里插入图片描述

2. Token,Tokenization和Tokenizer的概念

首先,什么是Token?什么是Tokenization? 什么又是Tokenizer
Token:是文本数据的基本单元也即词元,通常表示一个词、子词或字符.
Tokenization:Tokenization中文翻译为分词,是将原始文本字符串分割成一系列Token的过程。这个过程可以有不同的粒度,比如单词级别分词(Word-based Tokenizer)、字符级别分词(Character-based Tokenizer)和子词级别分词(Subword-based Tokenizer)。
Tokenizer: 是将文本切分成多个tokens的工具或算法
另外再NLP中我们经常会遇到一个词OOV(Out Of Vocabulary),意思是有些单词在词典中查询不到,例如一些根据词根现造的词,或者拼写错误的词等

接下来,我们首先介绍两种比较容易理解的分词Word-based TokenizerCharacter-based Tokenizer

3. Word-based Tokenizer

Word-based Tokenization 是将将文本划分为一个个词(包括标点)

我们以这句话为例:"Don't you love 🤗 Transformers? We sure do."

一种最简单的方法是通过空格进行划分:

["Don't", "you", "love", "🤗", "Transformers?", "We", "sure", "do."]

在这种划分下,标点和单词是粘在一起的: ["Transformers?","do."],,如果把标点也作为一个词的话,可以进一步划分:

["Don", "'", "t", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."]

但是这里的Don't 应该被划分为Do,n't,引入规则之后事情就变得复杂起来了。

英文的划分有两个常用的基于规则的工具spaCyMoses,划分如下:

["Do", "n't", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."]

使用Word-base Tokenizer,
优点是:符合人的自然语言和直觉。
缺点是: ①相同意思的词被划分为不同的token,比如:dog和dogs ② 最终的词表会非常大

在这里插入图片描述
因此我们可以设置词表上限比如上限为10000,未知的词用Unkown表示
在这里插入图片描述
但是这样会损失大量的信息,模型性能大打折扣!

4. Character-based Tokenizer

Character-based Tokenizer 将文本划分为一个个字符(包括标点)。
我们以这个例子为例: Today is Sunday.

按照Character 划分,我们可以得到

["T","o","d","a","y","i","s","S","u","n","d","a","y"]

使用Character-based Tokenizer 划分的优点是
① 大大减少了词汇量,在256个ASCII码表示的范围内
② 可以表示任意字符,不会出现unkown的情况
缺点是
①字母包含的信息量低,一个字母"T” 无法知道它具体指代的是什么,但如果是"Today"语义就比较明确
②相对于Word-based Tokenizer ,会产生很长的token序列
③如果是中文,依然会有很大的词汇量

5. Subword-based Tokenizer

在了解了Word-based Tokenizer和Character-based Tokenizer之后,我知道它们各有优缺点,接下来要介绍的Subword-based Tokenizer 则是这两种方法的折中。
在这里插入图片描述

Subword-based Tokenizer有BPE/BBPE,Unigram,WordPiece和SentencePiece,这些分词算法在下列模型中有应用
在这里插入图片描述

5.1 BPE/BBPE

5.1.1 BPE

BPE分词最早在 Neural Machine Translation of Rare Words with Subword Units (Sennrich et al.2015)中提出.BPE分为两部分“词频统计”“词表合并”。词频统计依赖于一个预分词器(pre-tokenization)将训练数据分成单词。预分词器可以非常简单,按照空格进行分词。例如GPT2,RoBERTa等就是这样实现的,更高级的预分词器引入了基于规则的分词,例如XLM,FlauBERT 使用Moses, GPT 使用spaCyftfy来统计语料中每个单词的词频。

在预分词之后,创建一个包含不同单词和对应词频的集合,接下来根据这个集合创建包含所有字符的词表,再根据合并规则两两合并形成一个新字符,将频率最高的新字符加入词表,直到达到预先设置的数量,停止合并。

仅仅讲概念可能会比较抽象,我们这里举个例子:

假设在预分词(一般采用Word-based Tokenization)之后,得到如下的包含词频的集合:

("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

因此,基本词汇表是这样的:["b", "g", "h", "n", "p", "s", "u"] ,将所有单词按照词汇表里的字符切割得到如下形式:

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

接下来统计相邻的两个字符组成的字符对的出现的频率:

在这里插入图片描述
ug出现了20次,出现次数最高,因此把ug加入词汇表,并将出现在一起的u,g用ug替换,然后在此统计词频un出现的频率最高,将un加入到词表,并将出现在一起的u,n用un替换。
在这里插入图片描述
接着进行第三次
在这里插入图片描述
假设基本词汇有478个,经过了40000次合并就有40478个,然后我利用这个词表进行分词,对于不在词表中的设置为特殊词<unk>
在这里插入图片描述

5.1.2 BBPE

重点介绍一下BBPE ,因为GPT2,GPT3,GPT4和LLaMA用的就是它,BBPE即 Byte-level BPE

5.2 Unigram

5.3 WordPiece

5.4 SentencePiece

BPE、WordPiece、Unigram 的缺点:
①假设输入文本使用空格来分隔单词,但并非所有语言都使用空格来分隔单词(如中文、韩文、日文、阿拉伯语)
②可以使用特定语言的pre-tokenizer 分词,但不太通用
为解决这个问题,SentencePiece将输入视为输入字节流,包括空格 然后搭配BBPE和Unigram来使用

参考文献

简介NLP中的Tokenization(基于Word,Subword 和 Character)
https://zhuanlan.zhihu.com/p/620603105
https://blog.csdn.net/zhaohongfei_358/article/details/123379481
LLM大语言模型之Tokenization分词方法

这篇关于深度学习——LLM大模型分词的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120743

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3