机器学习:TF-IDF算法原理及代码实现

2024-08-30 09:04

本文主要是介绍机器学习:TF-IDF算法原理及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TF-IDF是一种用于信息检索与文本挖掘的常用加权技术。它是一种统计方法,用以评估一个词语对于一个文件集或一个语料库中的其中一份文件的重要程度。它的主要思想是:如果某个词语在一篇文章中出现的频率高(Term Frequency,TF),并且在其他文章中很少出现(Inverse Document Frequency,IDF),则认为这个词语具有很好的类别区分能力,对这篇文章的内容有很好的指示作用。

1. 词频(TF)

  • 定义:表示词条(关键字)在文档中出现的频率。
  • 计算公式
  • 目的:评估词条在文档中的重要性。

2. 逆文档频率(IDF)

  • 定义:表示词条的普遍重要性。
  • 计算公式
  • 目的:评估词条的稀有程度,降低常见词的权重。

3. TF-IDF

  • 定义:一个词条在一个文档中的重要性与它在语料库中的稀有程度的乘积。
  • 计算公式
  • 应用:通过计算文档中每个词条的TF-IDF值,可以评估词条对文档的区分能力。

4.优点:

  1. 简单性:TF-IDF算法易于理解和实现,不需要复杂的数学模型或机器学习技术。

  2. 有效性:在许多情况下,TF-IDF能够有效地捕捉文档中关键词的重要性,对于初步的文本分析和检索任务非常有效。

  3. 去噪能力:通过降低常见词的权重,TF-IDF减少了停用词和其他常见词对文本分析的影响。

  4. 无监督:TF-IDF不需要训练数据,可以应用于任何文本集合,无需事先标注。

  5. 多领域适用性:TF-IDF算法不依赖于特定领域的知识,因此可以应用于不同的领域和语料库。

  6. 可扩展性:TF-IDF可以应用于大规模文档集合,尽管计算和存储需求可能会随着文档数量的增加而增加。

5.缺点:

  1. 忽略词序:TF-IDF不考虑词条在文档中的位置或顺序,这可能会丢失一些语义信息。

  2. 对文档长度敏感:长文档可能会倾向于降低词条的权重,因为TF是基于词条出现次数的,而IDF与文档总数成反比。

  3. 无法捕捉同义词:TF-IDF无法识别意义相同或相近的不同词条,例如“汽车”和“轿车”可能被视为两个不同的词条。

  4. 无法处理多义词:TF-IDF不区分词条的不同含义,这可能导致在某些情况下权重分配不准确。

  5. 停用词处理:虽然TF-IDF降低了常见词的权重,但停用词的筛选需要预先进行,且不同的应用可能需要不同的停用词列表。

  6. 权重分配:TF-IDF的权重分配可能不是最优的,特别是在某些特定类型的文本分析任务中,可能需要更复杂的权重分配策略。

  7. 无法捕捉语义关系:TF-IDF不包含语义分析,无法捕捉词条之间的语义关系或上下文信息。

  8. 更新和维护成本:随着语料库的更新,TF-IDF模型需要重新计算,这可能在大规模数据集上是一个挑战。

6.代码实现

        1.数据预处理(task2_1.txt)

#打开文件task2_1.txt并读取所有行到列表cor。
import pandas as pd
infile=open(r"task2_1.txt","r")
cor=infile.readlines()

        2.导入TfidfVectorizer并初始化。

from sklearn.feature_extraction.text import TfidfVectorizer
tf=TfidfVectorizer()

        3.使用TfidfVectorizer将文本数据转换为TF-IDF矩阵。

tfidf=tf.fit_transform(cor)

        4.获取TF-IDF模型中的词汇表。

wordlist=tf.get_feature_names_out()

        5.创建一个DataFrame,其中词汇表作为索引,TF-IDF矩阵转置后的密集形式作为数据。

df=pd.DataFrame(tfidf.T.todense(),index=wordlist)

        6.遍历每篇文档,创建一个字典resdict来存储每篇文档中权重最高的词条。

for k in range(len(cor)):fea=df.iloc[:,k].to_list()resdict={}for i in range(0,len(wordlist)):if df.iloc[i,k]!= 0:  # 只考虑非零权重的词条resdict[wordlist[i]]=fea[i]# 按权重降序排序词条resdict=sorted(resdict.items(),key=lambda  x:x[1],reverse=True)print(resdict)

        7.完整代码

import pandas as pd
infile=open(r"task2_1.txt","r")
cor=infile.readlines()
# 初始化TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
tf=TfidfVectorizer()
# 转换文本数据为TF-IDF矩阵
tfidf=tf.fit_transform(cor)
# 获取词汇表
wordlist=tf.get_feature_names_out()
# 创建DataFrame,将词汇表作为行索引,原始文本数据作为列
df=pd.DataFrame(tfidf.T.todense(),index=wordlist)
for k in range(len(cor)):fea=df.iloc[:,k].to_list()resdict={}for i in range(0,len(wordlist)):if df.iloc[i,k]!= 0:resdict[wordlist[i]]=fea[i]resdict=sorted(resdict.items(),key=lambda  x:x[1],reverse=True)print(resdict)

这篇关于机器学习:TF-IDF算法原理及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120378

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import