动手学深度学习(pytorch)学习记录21-读写文件(模型与参数)[学习记录]

2024-08-30 07:28

本文主要是介绍动手学深度学习(pytorch)学习记录21-读写文件(模型与参数)[学习记录],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 加载和保存张量
  • 加载和保存模型参数

保存模型的好处众多,涵盖了从开发到部署的整个机器学习生命周期。

  • 节省资源:训练模型可能需要大量的时间和计算资源。保存模型可以避免重复训练,从而节省时间和计算资源。
  • 快速部署:一旦模型被训练并保存,它可以迅速部署到生产环境中,加速产品上市时间。
  • 版本控制:保存不同版本的模型有助于跟踪模型的迭代过程,便于比较和回滚到之前的版本。
  • 离线使用:保存的模型可以在没有网络连接的情况下使用,这对于需要在本地设备上运行模型的应用程序非常有用。
  • 模型共享:研究人员和开发者可以共享他们的模型,促进合作和知识传播。
  • 模型评估:保存的模型可以在不同的数据集上进行评估,帮助验证模型的泛化能力和性能。
  • 实验复现:保存模型的状态使得其他研究者可以复现实验结果,增加研究的可验证性。
  • 业务连续性:在系统升级或迁移过程中,保存的模型可以确保业务的连续性,减少停机时间。
  • 法律合规:在某些行业,如医疗和金融,保存模型可能是必须的,以满足法律和合规要求。
  • 模型优化:保存的模型可以用于进一步的优化,如模型压缩、加速等,以适应不同的部署环境。
  • 模型监控:在模型部署后,保存的模型可以用于监控和比较,以检测模型性能随时间的变化。
  • 用户信任:提供透明的模型保存信息可以增加用户对模型决策的信任。
  • 教育和研究:保存的模型可以作为教育材料,帮助学生和研究人员学习模型的工作原理。
  • 灾难恢复:在发生系统故障时,保存的模型可以作为备份,快速恢复服务。
  • 长期维护:随着时间的推移,保存的模型可以用于维护和更新,以适应新的数据和需求。

加载和保存张量

# 保存张量
import torch
from torch import nn
from torch.nn import functional as Fx = torch.arange(4)
torch.save(x, 'x-file')

将存储在文件中的数据读回内存。

x2 = torch.load('x-file')
x2
tensor([0, 1, 2, 3])

存储一个张量列表,然后把它们读回内存。

y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)
(tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.]))

可以写入或读取从字符串映射到张量的字典。 当我们要读取或写入模型中的所有权重时,这很方便。

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2
{'x': tensor([0, 1, 2, 3]), 'y': tensor([0., 0., 0., 0.])}

加载和保存模型参数

class MLP(nn.Module):def __init__(self):super().__init__()self.hidden = nn.Linear(20, 256)self.output = nn.Linear(256, 10)def forward(self, x):return self.output(F.relu(self.hidden(x)))net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

将模型的参数存储在一个叫做“mlp.params”的文件中

torch.save(net.state_dict(), 'mlp.params')

为恢复模型,需实例化原始多层感知机模型的一个备份, 直接读取文件中存储的参数作为初始参数。

clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
MLP((hidden): Linear(in_features=20, out_features=256, bias=True)(output): Linear(in_features=256, out_features=10, bias=True)
)

由于两个实例具有相同的模型参数,在输入相同的X时, 两个实例的计算结果应该相同。

Y_clone = clone(X)
Y_clone == Y
tensor([[True, True, True, True, True, True, True, True, True, True],[True, True, True, True, True, True, True, True, True, True]])

保存整个模型

torch.save(net, 'net.pt')
net1 = torch.load('net.pt')
net1.eval()
MLP((hidden): Linear(in_features=20, out_features=256, bias=True)(output): Linear(in_features=256, out_features=10, bias=True)
)

原模型和新加载的模型参数应该是相同的。

net.state_dict()['hidden.weight'].data == net1.state_dict()['hidden.weight'].data
tensor([[True, True, True,  ..., True, True, True],[True, True, True,  ..., True, True, True],[True, True, True,  ..., True, True, True],...,[True, True, True,  ..., True, True, True],[True, True, True,  ..., True, True, True],[True, True, True,  ..., True, True, True]])

封面图片来源

欢迎点击我的主页查看更多文章。
本人学习地址https://zh-v2.d2l.ai/
恳请大佬批评指正。

这篇关于动手学深度学习(pytorch)学习记录21-读写文件(模型与参数)[学习记录]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120168

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、