使用分离轴定理对多边形进行碰撞检测

2024-08-30 04:44

本文主要是介绍使用分离轴定理对多边形进行碰撞检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

分离轴定理(SAT,Separating Axis Theorem)进行二维多边形碰撞检测是一种常见且有效的方法,用于二维多边形碰撞检测的基本思想是:如果两个凸多边形不相交,那么存在一条轴(线),使得这条轴上的投影会使两个多边形的投影不重叠。换句话说,如果我们找到一条轴,使得两个多边形在这条轴上的投影不重叠,那么我们可以确定两个多边形不会相交。

一、计算所有可能的分离轴

对于每个多边形,计算所有边的法向量作为可能的分离轴

对于每个边(即每条边的法向量),法向量是与边垂直的向量

// 计算一个向量的法向量
Vector2 perpendicular(const Vector2& v) {return Vector2(-v.y, v.x);
}// 计算多边形的边法向量
std::vector<Vector2> getPolygonAxes(const std::vector<Vector2>& polygon) {std::vector<Vector2> axes;size_t count = polygon.size();for (size_t i = 0; i < count; ++i) {Vector2 edge = polygon[(i + 1) % count] - polygon[i];axes.push_back(perpendicular(edge));}return axes;
}

二、将多边形投影到每个分离轴上

使用点积运算将多边形的每个顶点投影到分离轴上

计算这些投影的最小值和最大值,以确定投影区间。

// 投影一个多边形到一个轴上
std::pair<float, float> projectPolygon(const std::vector<Vector2>& polygon, const Vector2& axis) {float min = dot(polygon[0], axis);float max = min;for (const auto& vertex : polygon) {float projection = dot(vertex, axis);min = std::min(min, projection);max = std::max(max, projection);}return {min, max};
}// 检查两个多边形是否相交
bool polygonsIntersect(const std::vector<Vector2>& poly1, const std::vector<Vector2>& poly2) {std::vector<Vector2> axes = getPolygonAxes(poly1);std::vector<Vector2> axes2 = getPolygonAxes(poly2);// 将两个多边形的轴合并axes.insert(axes.end(), axes2.begin(), axes2.end());for (const auto& axis : axes) {auto proj1 = projectPolygon(poly1, axis);auto proj2 = projectPolygon(poly2, axis);if (!overlap(proj1, proj2)) {return false; // 找到一个分离轴,两个多边形不相交}}return true; // 没有找到分离轴,两个多边形相交
}

三、检查投影是否重叠 

对每条分离轴上的投影区间进行重叠检测。

如果在任何一个轴上投影区间不重叠,两个多边形就不会相交。

如果所有的轴上投影区间都重叠,那么两个多边形相交。

// 检查两个区间是否重叠
bool overlap(const std::pair<float, float>& a, const std::pair<float, float>& b) {return !(a.second < b.first || b.second < a.first);
}

四、测试源码 

#include <vector>
#include <iostream>
#include <algorithm> // For std::max and std::min// 表示二维向量
struct Vector2 {float x, y;Vector2(float x = 0, float y = 0) : x(x), y(y) {}
};// 计算两个向量的点积
float dot(const Vector2& a, const Vector2& b) {return a.x * b.x + a.y * b.y;
}// 计算两个向量的差
Vector2 operator-(const Vector2& a, const Vector2& b) {return Vector2(a.x - b.x, a.y - b.y);
}// 计算一个向量的法向量
Vector2 perpendicular(const Vector2& v) {return Vector2(-v.y, v.x);
}// 计算多边形的边法向量
std::vector<Vector2> getPolygonAxes(const std::vector<Vector2>& polygon) {std::vector<Vector2> axes;size_t count = polygon.size();for (size_t i = 0; i < count; ++i) {Vector2 edge = polygon[(i + 1) % count] - polygon[i];axes.push_back(perpendicular(edge));}return axes;
}// 投影一个多边形到一个轴上
std::pair<float, float> projectPolygon(const std::vector<Vector2>& polygon, const Vector2& axis) {float min = dot(polygon[0], axis);float max = min;for (const auto& vertex : polygon) {float projection = dot(vertex, axis);min = std::min(min, projection);max = std::max(max, projection);}return {min, max};
}// 检查两个区间是否重叠
bool overlap(const std::pair<float, float>& a, const std::pair<float, float>& b) {return !(a.second < b.first || b.second < a.first);
}// 检查两个多边形是否相交
bool polygonsIntersect(const std::vector<Vector2>& poly1, const std::vector<Vector2>& poly2) {std::vector<Vector2> axes = getPolygonAxes(poly1);std::vector<Vector2> axes2 = getPolygonAxes(poly2);// 将两个多边形的轴合并axes.insert(axes.end(), axes2.begin(), axes2.end());for (const auto& axis : axes) {auto proj1 = projectPolygon(poly1, axis);auto proj2 = projectPolygon(poly2, axis);if (!overlap(proj1, proj2)) {return false; // 找到一个分离轴,两个多边形不相交}}return true; // 没有找到分离轴,两个多边形相交
}int main() {std::vector<Vector2> poly1 = {Vector2(0, 0), Vector2(1, 0),Vector2(1, 1), Vector2(0, 1)};std::vector<Vector2> poly2 = {Vector2(0.5, 0.5), Vector2(1.5, 0.5),Vector2(1.5, 1.5), Vector2(0.5, 1.5)};if (polygonsIntersect(poly1, poly2)) {std::cout << "Polygons intersect!" << std::endl;} else {std::cout << "Polygons do not intersect." << std::endl;}return 0;
}

这篇关于使用分离轴定理对多边形进行碰撞检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119834

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测