在自己的数据集上测试coco评价指标——以Mar20为例

2024-08-29 21:20

本文主要是介绍在自己的数据集上测试coco评价指标——以Mar20为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:
1.在自己的数据集上调用cocoapi计算map
2. COCO Result Format
3.COCO result json
之前的模型都是在COCO数据集上训练,数据集的标注以及结果的生成格式都是按照官方的格式组织的,调用cocoapi和官方下载的instance_val2017.json计算就可以了。
现在需要在其他数据集上测试map等指标,这些图片都是标注好的,但是格式和coco要求不一样,因此需要进行转换。
分为四个步骤:1. 数据集划分和标签转换;2.将标注转为coco的result格式;3. 将模型推理结果保存为result格式;4.调用cocoapi计算;

我要测试的数据集为Mar20,数据的标注格式为未归一化的(xmin, xmax, ymin, ymax),COCO的标注格式为未归一化的(xmin, ymin, width, height)。数据集的组织形式如下:
在这里插入图片描述
注意:这里测试的MAR20数据集类别为20种飞机类,测试过程中我将这20类全部映射为了COCO的飞机类别。如果需要测试其他数据集,在标签转换过程中需要注意cls_id这个属性。

[‘A1’,‘A2’,‘A3’,‘A4’,‘A5’,‘A6’,‘A7’,‘A8’,‘A9’,‘A10’,‘A11’,‘A12’,‘A13’,‘A14’,‘A15’,‘A16’,‘A17’,‘A18’,‘A19’,‘A20’]

一、数据集划分和标签转换

1.xml标签转为txt

首先将xml标签转化为txt。注意不同的数据集修改数据集类别,convert函数,convert_annotation函数里的cls_id,以及数据的路径。转换后的标签保存在MAR20/coco_Labels目录下。

import xml.etree.ElementTree as ET
import os
import cv2
import random
random.seed(0)# 数据集类别
classes = ['A1','A2','A3','A4','A5','A6','A7','A8','A9','A10','A11','A12','A13','A14','A15','A16','A17','A18','A19','A20' ]def convert(box):# 修改 box : xmin, xmax, ymin, ymax -- xmin, ymin, w, hy= box[2]x= box[0]w = box[1] - box[0]h = box[3] - box[2]return (int(x), int(y), int(w), int(h))#  修改 数据集地址
dataset_path = './datasets/MAR20'def convert_annotation(image_id):in_file = open(os.path.join(dataset_path, f'Annotations/Horizontal Bounding Boxes/{image_id}.xml'))  # 修改 xml所在路径img_file = cv2.imread(os.path.join(dataset_path, f'JPEGImages/{image_id}.jpg'))  # 修改 图片所在路径out_file = open(os.path.join(dataset_path, f'coco_Labels/{image_id}.txt' ),'w+')  # 修改 转换后的txt保存路径tree = ET.parse(in_file)root = tree.getroot()assert img_file is not Nonesize = img_file.shape[0:-1]h = int(size[0])w = int(size[1])for obj in root.iter('object'):cls = obj.find('name').textif cls not in classes :continue# cls_id = classes.index(cls)cls_id = 4  # 修改 Mar20是飞机目标识别,细分为10类,这里将飞机目标统一为COCO的飞机目标类别,即4xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))ZIP_ONE = convert(b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in ZIP_ONE]) + '\n')wd = getcwd()coco_Labels_out = os.path.join(dataset_path, 'coco_Labels')  # 修改 保存图片绝对路径的txt文件的路径if not os.path.exists(coco_Labels_out):os.makedirs(coco_Labels_out)images = os.listdir(os.path.join(dataset_path, 'JPEGImages'))  # 修改 图片所在文件夹
files = [file for file in images if file.endswith('.jpg')]
image_ids = [file.split('.')[0] for file in files]for image_id in image_ids:try:print(image_id)        convert_annotation(image_id)except:print('error img:', image_id)

运行以上代码后会在coco_Labels文件夹下生成以下文本:
在这里插入图片描述

2.划分数据集

然后划分数据集的图片和标签,注意修改划分的比例,输入和输出的地址。划分后的数据保存在MAR20/split目录下。

import os
import random
from shutil import copyfile
random.seed(0)def split_dataset(input_images_dir, input_labels_dir, output_dir, split_ratio=(0.7, 0.05, 0.25)):# 创建输出目录结构os.makedirs(output_dir, exist_ok=True)os.makedirs(os.path.join(output_dir, 'images', 'train'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'images', 'val'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'images', 'test'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'labels', 'train'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'labels', 'val'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'labels', 'test'), exist_ok=True)# 获取所有图片文件image_files = [f for f in os.listdir(input_images_dir) if f.endswith('.jpg')]num_images = len(image_files)# 随机打乱图片顺序random.shuffle(image_files)# 计算划分的数量num_train = int(num_images * split_ratio[0])num_val = int(num_images * split_ratio[1])num_test = num_images - num_train - num_val# 分割图片和标签文件for i, image_file in enumerate(image_files):if i < num_train:set_name = 'train'elif i < num_train + num_val:set_name = 'val'else:set_name = 'test'# 复制图片文件copyfile(os.path.join(input_images_dir, image_file), os.path.join(output_dir, 'images', set_name, image_file))# 构建对应的标签文件名label_file = os.path.splitext(image_file)[0] + '.txt'# 复制标签文件copyfile(os.path.join(input_labels_dir, label_file), os.path.join(output_dir, 'labels', set_name, label_file))# 修改 数据集地址
dataset_path = './datasets/MAR20'# 修改输出地址
output_dir = os.path.join(dataset_path, 'split')
os.makedirs(output_dir, exist_ok=True)# 修改输入图片和标签地址
input_images_dir = os.path.join(dataset_path, 'JPEGImages')
input_labels_dir = os.path.join(dataset_path,'coco_Labels')split_ratio=(0.7, 0.05, 0.25)
# 调用划分函数 划分比例为70%训练集,5%验证集,25%测试集
split_dataset(input_images_dir, input_labels_dir, output_dir, split_ratio)

划分好后,在MAR20/split文件夹下生成以下文件:
在这里插入图片描述

二、将标注转为coco的result格式

首先将test数据集的图片路径保存到test.txt文件中:

import xml.etree.ElementTree as ET
import os# test图片路径
test_path = './datasets/MAR20/split/images/test'
# 保存txt路径
saved_txt_path = './datasets/MAR20/test.txt'for img in os.listdir(test_path):img_path = os.path.join(test_path, img)with open(saved_txt_path, 'a') as f:f.write(img_path + '\n')

MAR20/test.txt文件内容如下:
在这里插入图片描述
然后将MAR20/labels/test文件夹下的标注转换为coco格式,输出为annotations.json:

import json
import cv2
import osif __name__=='__main__':cats = list()# 输出的json文件路径out_path = 'annotations.json'# test.txt路径test_path = './datasets/MAR20/test.txt'with open('obj.names', 'r') as f:for line in f.readlines():line = line.strip('\n')cats.append(line)cat_info = []for i, cat in enumerate(cats):cat_info.append({'name': cat, 'id': i})ret = {'images': [], 'annotations': [], "categories": cat_info}i = 0for line in open(test_path, 'r'):line = line.strip('\n')i += 1image_id = eval(os.path.basename(line).split('.')[0])image_info = {'file_name': '{}'.format(line), 'id': image_id}ret['images'].append(image_info)anno_path = line.replace('.jpg', '.txt')anno_path = anno_path.replace('images', 'labels')anns = open(anno_path, 'r')img = cv2.imread(line)height, width = img.shape[0], img.shape[1]for ann_id, txt in enumerate(anns):tmp = txt[:-1].split(' ')cat_id = tmp[0]bbox = [float(x) for x in tmp[1:]]  # 注意box格式,已经提前转换成coco格式了area = round(bbox[2] * bbox[3], 2)# coco annotation formatann = {'image_id': image_id,'id': int(len(ret['annotations']) + 1),'category_id': int(cat_id),'bbox': bbox,'iscrowd': 0,'area': area}ret['annotations'].append(ann)json.dump(ret, open(out_path, 'w'))

以上转换需要用到的coco标签和id对应关系如下,文件名为obj.names,复制以下内容保存到obj.names中:

0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush

三、将推理结果转换为coco格式

推理的时候将单帧结果保存在items,所有的推理结果保存在result,然后将result保存到results.txt文件中。
保存的格式可以参考https://cocodataset.org/#format-results 和 https://github.com/cocodataset/cocoapi/tree/master/results

然后手动将results.txt后缀改为.json即可(保存为json总是报错,麻了)。

#  items为每一帧的检测结果for i in range(len(classes)):items.append({"image_id": eval(image_name),"category_id":classes[i],"bbox":boxes[i].tolist(), "score":1.0})# 检测结果为空也要保存,否则会导致后续的评估出错if len(items)==0:items.append({"image_id": eval(image_name),"category_id":0,"bbox":[0,0,0,0], "score":0})# 以上代码保存了单帧检测结果,result保存了所有的结果
result = []
# ...
result.extend(items)json_file_path = 'results.txt'
# 字典键值会自动变为单引号,json格式必须为双引号,所以需要用json.dumps()函数转换字符
json_str = json.dumps(result, ensure_ascii=False, default=default_dump) 
with open(json_file_path, 'w') as file:file.write(str(json_str))

四、调用cocoapi计算coco指标

直接调用接口即可计算coco指标:

from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOevaldef main():results_file ='result.json'annotations = 'annotations.json'cocoGt = COCO(annotations)cocoDt = cocoGt.loadRes(results_file)cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')cocoEval.params.catIds = [4] # 你可以根据需要增减类别cocoEval.evaluate()cocoEval.accumulate()cocoEval.summarize()if __name__ == '__main__':main()

五、YOLO系列调用cocoapi

根据前面一、二步骤划分好数据集,转换好annotations.json,可以直接运行以下.py文件获得coco指标:

import os
import jsonfrom pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from ultralytics import YOLOdef generate_results(yolo, imgs_dir, jpgs, results_file):"""Run detection on each jpg and write results to file."""results = []for jpg in jpgs:img_path = os.path.join(imgs_dir, jpg)image_id = int(jpg.split('.')[0])det = yolo.predict(img_path, conf=0.25,save=True)boxes = det[0].boxesfor i in range(len(boxes)):box = boxes[i]# 注意ultralytics中的xywh坐标中xy是中心点坐标,coco中的xy是左上角坐标x_c, y_c, w, h = box.xywh.tolist()[0]   x_min = x_c - w / 2y_min = y_c - h / 2conf = box.conf.tolist()[0]cls = int(box.cls.tolist()[0])results.append({'image_id': image_id,'category_id': cls,'bbox': [x_min, y_min, w, h],'score': float(conf)})with open(results_file, 'w') as f:f.write(json.dumps(results, indent=4))def main():results_file ='result.json'  # yolo推理结果保存文件imgs_dir = './datasets/MAR20/split/images/test'  # 测试集图片路径annotations = 'annotations.json'  # gt标注文件model=YOLO('yolov8l.yaml').load("/home/jingjia/sdb/liaocheng/ultralytics-main/yolov8l.pt")jpgs = [j for j in os.listdir(imgs_dir) if j.endswith('.jpg')]generate_results(model, imgs_dir, jpgs, results_file)# Run COCO mAP evaluation# Reference: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynbcocoGt = COCO(annotations)cocoDt = cocoGt.loadRes(results_file)cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')cocoEval.params.catIds = [4] # 你可以根据需要增减类别cocoEval.evaluate()cocoEval.accumulate()cocoEval.summarize()if __name__ == '__main__':main()

运行结果:
在这里插入图片描述

这篇关于在自己的数据集上测试coco评价指标——以Mar20为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118921

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在