Amazon Bedrock 实践:零基础创建贪吃蛇游戏

2024-08-29 17:36

本文主要是介绍Amazon Bedrock 实践:零基础创建贪吃蛇游戏,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文探讨了如何利用 Amazon Bedrock 和大型语言模型,快速创建经典的贪吃蛇游戏原型代码。重点展示了利用提示工程,将创新想法高效转化为可运行代码方面的过程。文章还介绍了评估和优化提示词质量的最佳实践。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点这里让它成为你的技术宝库!

原文出处来自作者于 2024 年 8 月在 community.aws 发表的博客:

“From Concept to Playable in seconds:Creating the Greedy Snake Game with Amazon Bedrock”:https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct?trk=cndc-detail

概述

在软件开发领域演进的历史长河中,开发者投入的时间一直是一种非常宝贵的资源。作为开发者,我们一直在不断地寻求创新的方法来简化工作流程、减少技术债务,并希望以提升开发的速度和效率将想法快速付诸实践。而生成式 AI(Generative AI)正是这一游戏规则的改变者,它有望彻底革新我们进行编码和解决问题的方式。

想象一下,你能够快速进行原型开发和概念验证,这已经是 Amazon Bedrock 这种生成式 AI 平台所能提供的现实了。通过利用在海量数据上训练的大型语言模型的强大能力,我们可以加速开发周期,并评估提示词的质量以获得最佳结果。

在这篇博客文章中,我将探讨如何利用 Amazon Bedrock,使用自然语言从零开始创建经典的贪吃蛇游戏。此外,我还将探讨如何进一步利用 Amazon Bedrock 上的大模型来评估和改进我的提示词,确保更高质量的代码输出。通过结合正确的提示词和合适的大模型,我们将目睹一个从创新想法到可玩游戏的完整生成之旅,而这一切只需几秒钟,这都归功于 Amazon Bedrock 能够简化原型设计,并实现快速概念验证。

让我们开始这段愉快的自然语言直接编写贪吃蛇游戏之旅吧!

使用的大型语言模型

我用于生成游戏代码的大型语言模型,采用了在 Amazon Bedrock 上的 Meta Llama 3.1 70B Instruct。

Amazon Bedrock 是一个强大的生成式 AI 平台,允许开发者为各种用例(包括代码生成等)创建和微调大型模型。而 Meta Llama 3.1 70B Instruct 模型专门用于遵循指令和生成高质量代码。你可以在 Hugging Face 上参考模型卡片以了解更多详情:https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct?trk=cndc-detail

提示工程方法

成功使用生成式 AI 的关键之一在于提示工程(Prompt Engineering):即创建清晰、具体的提示词,以指导模型精确生成所需的输出。

以下是我用来生成贪吃蛇游戏代码的提示词:

“Write a short and high-quality python script for the following task, something a very skilled python expert would write. You are writing code for an experienced developer so only add comments for things that are non-obvious. Make sure to include any imports required.

NEVER write anything before the python block. After you are done generating the code and after the python block, check your work carefully to make sure there are no mistakes, errors, or inconsistencies.

If there are errors, list those errors in tags, then generate a new version with those errors fixed. If there are no errors, write "CHECKED:NO ERRORS" in tags.

Here is the task:write a greedy snake game.

Double check your work to ensure no errors or inconsistencies.”

正如你所看到的,这个提示词为游戏的功能、要使用的库以及其他实现细节提供了详细的要求。提供这种程度的明确性对于从生成式 AI 模型获得高质量的代码输出至关重要。

在 Amazon Bedrock Chat Playground 中,单击“Run”以将上述提示词提交给 Meta Llama 3.1 70B Instruct 模型,然后等待几秒钟模型的响应。如下截图所示:

image.png

输出:贪吃蛇游戏代码

输入提示词后,Amazon Bedrock 上的 Llama 3.1 70B Instruct 模型,在几秒内迅速生成了以下的 Python 代码,该代码基本实现了一个功能齐全的贪吃蛇游戏。生成的完整代码如下:

import pygame
import sys
import random# Initialize Pygame
pygame.init()# Set up some constants
WIDTH, HEIGHT = 800, 600
BLOCK_SIZE = 20
SPEED = 10# Set up some colors
WHITE = (255, 255, 255)
RED = (255, 0, 0)
GREEN = (0, 255, 0)# Set up the display
screen = pygame.display.set_mode((WIDTH, HEIGHT))# Set up the font
font = pygame.font.Font(None, 36)# Set up the snake and food
snake = [(200, 200), (220, 200), (240, 200)]
food = (400, 300)# Set up the direction
direction = 'RIGHT'# Game loop
while True:for event in pygame.event.get():if event.type == pygame.QUIT:pygame.quit()sys.exit()elif event.type == pygame.KEYDOWN:if event.key == pygame.K_UP and direction != 'DOWN':direction = 'UP'elif event.key == pygame.K_DOWN and direction != 'UP':direction = 'DOWN'elif event.key == pygame.K_LEFT and direction != 'RIGHT':direction = 'LEFT'elif event.key == pygame.K_RIGHT and direction != 'LEFT':direction = 'RIGHT'# Move the snakehead = snake[-1]if direction == 'UP':new_head = (head[0], head[1] - BLOCK_SIZE)elif direction == 'DOWN':new_head = (head[0], head[1] + BLOCK_SIZE)elif direction == 'LEFT':new_head = (head[0] - BLOCK_SIZE, head[1])elif direction == 'RIGHT':new_head = (head[0] + BLOCK_SIZE, head[1])snake.append(new_head)# Check if the snake has eaten the foodif snake[-1] == food:food = (random.randint(0, WIDTH - BLOCK_SIZE) // BLOCK_SIZE * BLOCK_SIZE,random.randint(0, HEIGHT - BLOCK_SIZE) // BLOCK_SIZE * BLOCK_SIZE)else:snake.pop(0)# Check if the snake has hit the edge or itselfif (snake[-1][0] < 0 or snake[-1][0] >= WIDTH orsnake[-1][1] < 0 or snake[-1][1] >= HEIGHT orsnake[-1] in snake[:-1]):pygame.quit()sys.exit()# Draw everythingscreen.fill(WHITE)for pos in snake:pygame.draw.rect(screen, GREEN, pygame.Rect(pos[0], pos[1], BLOCK_SIZE, BLOCK_SIZE))pygame.draw.rect(screen, RED, pygame.Rect(food[0], food[1], BLOCK_SIZE, BLOCK_SIZE))text = font.render(f'Score:{len(snake)}', True, (0, 0, 0))screen.blit(text, (10, 10))# Update the displaypygame.display.flip()# Cap the frame ratepygame.time.delay(1000 // SPEED)

该代码的主要功能实现包括:初始化 Pygame,设置游戏的尺寸、块大小和速度等常量、定义显示元素的颜色、初始化显示屏幕等等。代码还设置了用于显示得分(贪吃蛇每吃到一个食物将获得一分)的字体,初始化了蛇和食物的位置,以及设置了蛇移动的初始方向等游戏要素。

游戏会循环持续检查用户输入事件,如用户退出了游戏,或者使用了方向键改变蛇的运动方向等。游戏主要逻辑将根据用户输入以及蛇的当前方向,来更新蛇的位置,并同时检查与食物或边界的是否碰撞,从而决定是否更新相应分数等。此外,游戏的循环代码还处理了在屏幕上渲染游戏元素,并限制帧率。

以下图像显示了我实际调试代码的场景。以代码片段作为背景,前景是正在运行的游戏截图:

image.png

值得一提的是,这个全面且可执行的代码是根据一段文本提示词生成的,没有提供任何补充示例或训练数据。这展示了 Amazon Bedrock 上的该大语言模型(Llama 3.1 70B Instruct)具有将自然语言描述直接转化为完整代码的出色能力,从而节省了游戏开发者相比于从头开始编写游戏代码所需的大量时间。

当然生成的代码并非完美无缺,可能需要增强或扩展一些额外功能。但它确实为开发者提供了一个坚实的基础。

评估提示词的质量

虽然我们已经成功生成了贪吃蛇游戏的一份完整代码,但我还是想客观地评估使用的提示词质量,因为我考虑未来是否可以更好地使用 AI 来生成代码。

我所参考的标准来自《Generative AI on AWS》一书中总结的 16 项提示工程最佳实践。我已将这 16 项最佳实践纳入我的评估提示词中,以评估之前用于生成贪吃蛇游戏的提示词质量。

完整的评估提示词如下:

Here are the key prompt-engineering best practices discussed in Chapter 2 of the book “Generative AI on AWS”:

  • Be clear and concise in your prompts. Avoid ambiguity.

  • Move the instruction to the end of the prompt for large amounts of input text.

  • Clearly convey the subject using who, what, where, when, why, how etc.

  • Use explicit directives if you want output in a particular format.

  • Avoid negative formulations if a more straightforward phrasing exists.

  • Include context and few-shot example prompts to guide the model.

  • Specify the desired size of the response.

  • Provide a specific response format using an example.

  • Define what the model should do if it cannot answer confidently (e.g. respond "I don't know").

  • Ask the model to "think step-by-step" for complex prompts requiring reasoning.

  • Add constraints like maximum length or excluded information for more control.

  • Evaluate the model's responses and refine prompts as needed.

  • Use disclaimers or avoid prompts the model should not answer for sensitive domains.

  • Use XML/HTML tags to create structure within the prompt.

  • Focus the model on specific parts of the input text.

  • Mask personally identifiable information from the model's output.

Based on the above 16 prompt-engineering best practices, please evaluate the following prompts I used to generate a Greedy Snake Game:

“Write a short and high-quality python script for the following task, something a very skilled python expert would write. You are writing code for an experienced developer so only add comments for things that are non-obvious. Make sure to include any imports required.

NEVER write anything before the python block. After you are done generating the code and after the python block, check your work carefully to make sure there are no mistakes, errors, or inconsistencies.

If there are errors, list those errors in tags, then generate a new version with those errors fixed. If there are no errors, write "CHECKED:NO ERRORS" in tags.

Here is the task:write a greedy snake game.

Double check your work to ensure no errors or inconsistencies.”

我在 Amazon Bedrock Chat Playground 中提交了上述提示词,如下图所示:

image.png

几秒钟后,收到了以下模型的完整评估输出:

模型输出提供了对我的提示词优点,以及潜在改进空间等非常有价值的见解。

首先,它在“优点”部分承认了我的提示语的优势:

  1. 明确简洁:你的提示语结构清晰,易于理解。

  2. 具体指示:你明确要求输出 Python 脚本格式和对高级别 Python 专家的期望水平。

  3. 上下文和少量示例提示语:你提供了一个明确的任务描述(贪吃蛇游戏)并指出了预期输出(高质量 Python 脚本)。

  4. 要求响应的大小:你要求一个“简短”的脚本。

  5. 具体响应格式:你使用python块来指示预期格式。

  6. 错误处理:你指示模型检查其工作并列出错误,或者如果没有错误则写“CHECKED:NO ERRORS”。

此外模型还建议如“缺陷”部分所示,提出一些改进提示语的建议:

  1. 含糊不清:虽然你的提示语总体很清楚,但“一个非常熟练的 Python 专家会写的东西”这句话可能有些主观和含糊不清。

  2. 否定表述:你用了“千万不要在python块之前写任何内容”,可以改为正面说法,例如“只能在python块中写代码”。

  3. 缺乏约束条件:你没有具体说明脚本的长度、复杂度或特定要求(如游戏功能、难度等级)的限制。

  4. 缺乏免责声明:你没有提及任何敏感领域或游戏内容可能存在的问题。

模型还提供了以下详细的代码修改具体建议:

  1. 考虑将“一个非常熟练的 Python 专家会写的东西”改为更客观的要求,如“遵循 Python 编码的最佳实践”。

  2. 用更积极的指示替换“千万不要在python块之前写任何内容”,比如“只能在python块中写代码”。

  3. 添加约束条件,例如“脚本不应超过 200 行代码”或“游戏应至少有 3 个等级”。

  4. 考虑添加一个免责声明,如“请确保游戏内容适合所有年龄段,不含任何令人反感的材料”。

总结

生成式 AI 彻底改变软件开发的潜力是巨大的。通过利用 Amazon Bedrock 和大型语言模型,开发者目前已经可以继续简化工作流程,快速构建原型并验证伟大的想法,这将加快软件开发迭代速度,以前所未有的效率将想法变为现实。

贪吃蛇游戏的例子展示了生成式 AI 将一个简单的提示词,转化为可运行游戏代码的惊人能力。然而,我们必须认识到:虽然生成的代码可以提供一个良好的基础,但可能需要进一步的完善和优化。

随着生成式 AI 的不断发展,我们可以期待更先进的模型、更好的提示词技术,以及与开发工具的更紧密集成。提前拥抱这一技术将获得重大的竞争优势。

最后,生成式 AI 并不是要取代人类开发者,而是增强他们能力的强大工具。通过将人类创造力与人工智能相结合,我们可以开启创新的软件开发新前景,创造更加非凡的软件产品和解决方案。

注:本文封面图像使用了 Amazon Bedrock 上的 Stable Diffusion XL 1.0 模型生成。提示词如下:

“A stylized digital illustration with a futuristic and technology-inspired design, depicting a large coiled snake made of sleek metallic materials and circuit board patterns. The snake's body forms the shape of the Amazon Bedrock logo in the center. Surrounding the snake are various coding elements, such as code snippets, programming symbols, and binary patterns, arranged in an abstract and visually striking way. The overall image should convey a sense of innovation, artificial intelligence, and the fusion of technology and creativity”

文章来源:Amazon Bedrock 实践:零基础创建贪吃蛇游戏

这篇关于Amazon Bedrock 实践:零基础创建贪吃蛇游戏的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118515

相关文章

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

在cscode中通过maven创建java项目

在cscode中创建java项目 可以通过博客完成maven的导入 建立maven项目 使用快捷键 Ctrl + Shift + P 建立一个 Maven 项目 1 Ctrl + Shift + P 打开输入框2 输入 "> java create"3 选择 maven4 选择 No Archetype5 输入 域名6 输入项目名称7 建立一个文件目录存放项目,文件名一般为项目名8 确定

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

国产游戏崛起:技术革新与文化自信的双重推动

近年来,国产游戏行业发展迅猛,技术水平和作品质量均得到了显著提升。特别是以《黑神话:悟空》为代表的一系列优秀作品,成功打破了过去中国游戏市场以手游和网游为主的局限,向全球玩家展示了中国在单机游戏领域的实力与潜力。随着中国开发者在画面渲染、物理引擎、AI 技术和服务器架构等方面取得了显著进展,国产游戏正逐步赢得国际市场的认可。然而,面对全球游戏行业的激烈竞争,国产游戏技术依然面临诸多挑战,未来的

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

顺序表之创建,判满,插入,输出

文章目录 🍊自我介绍🍊创建一个空的顺序表,为结构体在堆区分配空间🍊插入数据🍊输出数据🍊判断顺序表是否满了,满了返回值1,否则返回0🍊main函数 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾”