图像字幕Image Captioning——使用语法和语义正确的语言描述图像

本文主要是介绍图像字幕Image Captioning——使用语法和语义正确的语言描述图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 什么是图像字幕

        Image Captioning(图像字幕生成) 是计算机视觉和自然语言处理(NLP)领域的一个交叉研究任务,其目标是自动生成能够描述给定图像内容的自然语言句子。这项任务要求系统不仅要理解图像中的视觉内容,还要能够将这些视觉信息转化为具有连贯性和语义丰富的文本描述。

        图像字幕任务的3个关键因素:图像中的显著对象;对象之间的相互作用;用自然语言来表达它们。因此,在处理图像字幕任务中,一个好的方法要尽可能涵盖上述3个因素。

        下图是更具体的展示:

2. 图像字幕的工作流程

        通常,图像字幕生成涉及以下几个关键步骤:

  • 图像特征提取:首先使用卷积神经网络(CNN)或其他深度学习模型从图像中提取视觉特征。这些特征通常是在一个较高的抽象层次上,能够捕捉图像的内容和细节。
  • 特征编码:将提取的图像特征编码为一种能够被语言模型理解的格式。通常,这一步包括将高维的图像特征向量转化为语言模型的输入。
  • 序列生成:使用循环神经网络(RNN)、长短期记忆网络(LSTM)、或转换器(Transformer)等语言模型,根据编码的图像特征生成描述性文本序列。
  • 文本解码:将生成的序列转换为自然语言句子。

        Image Captioning是将图片转换为文字,是多模态任务,属于CV和NLP的交叉领域,因此其编码器部分通常使用CV中的结构,而解码器部分使用NLP中的结构。 

3. 常用方法-Encoder-Decoder 方法

        这是最常见的图像字幕生成框架,其中编码器(通常是 CNN)负责提取图像特征,解码器(通常是 RNN 或 LSTM)生成描述性文本。编码器和解码器之间可能会使用注意力机制,以帮助模型关注图像中最相关的部分。

3.1. 编码器

        主要有五类:

  •  1)Global CNN Features:使用CNN提取全局特征
  •  2)Attention Over Grid of CNN Features:使用CNN获取分块图像特征,这些分块特征作为语言解码器部分的输入;
  •  3)Attention Over Visual Regions:使用检测器提取图像中不同对象特征,这些对象特征作为语言解码器部分的输入;
  •  4)Graph-based Encoding:相比于方法3)加上了单独的对象间关系处理部分,使用Graph
  •  5)Self-Attention Encoding:相比于方法3),都加上了单独的对象间关系处理部分,使用自注意力机制。

        结合上文提到的图像字幕任务3个关键因素,方法4)和5)在模型设计上更有效,5)相比于4)在当下(2024-1)更主流,其中基于CLIP(2021)图像编码器的方法最具有潜力。

      

3.2. 解码器

        语言部分和视觉部分一样,都有着比较清晰的路线,从早期的RNN、LSTM到现在主流的Transformer(2017)、BERT(2018)。

4. 常用数据集

MSCOCO(Microsoft Common Objects in Context):这是最广泛使用的图像字幕生成数据集之一,包含超过 12 万张图像,每张图像有 5 条不同的描述。这些描述由人类标注,覆盖了广泛的场景和物体。

Flickr8k 和 Flickr30k:这两个数据集分别包含 8000 和 30000 张图像,每张图像也都有多个自然语言描述。它们广泛用于基准测试和模型评估。

Visual Genome:这是一个更大规模的数据集,包含丰富的物体、属性和关系标注,适合进行更复杂的图像理解和字幕生成任务。

这篇关于图像字幕Image Captioning——使用语法和语义正确的语言描述图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118315

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详