图像字幕Image Captioning——使用语法和语义正确的语言描述图像

本文主要是介绍图像字幕Image Captioning——使用语法和语义正确的语言描述图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 什么是图像字幕

        Image Captioning(图像字幕生成) 是计算机视觉和自然语言处理(NLP)领域的一个交叉研究任务,其目标是自动生成能够描述给定图像内容的自然语言句子。这项任务要求系统不仅要理解图像中的视觉内容,还要能够将这些视觉信息转化为具有连贯性和语义丰富的文本描述。

        图像字幕任务的3个关键因素:图像中的显著对象;对象之间的相互作用;用自然语言来表达它们。因此,在处理图像字幕任务中,一个好的方法要尽可能涵盖上述3个因素。

        下图是更具体的展示:

2. 图像字幕的工作流程

        通常,图像字幕生成涉及以下几个关键步骤:

  • 图像特征提取:首先使用卷积神经网络(CNN)或其他深度学习模型从图像中提取视觉特征。这些特征通常是在一个较高的抽象层次上,能够捕捉图像的内容和细节。
  • 特征编码:将提取的图像特征编码为一种能够被语言模型理解的格式。通常,这一步包括将高维的图像特征向量转化为语言模型的输入。
  • 序列生成:使用循环神经网络(RNN)、长短期记忆网络(LSTM)、或转换器(Transformer)等语言模型,根据编码的图像特征生成描述性文本序列。
  • 文本解码:将生成的序列转换为自然语言句子。

        Image Captioning是将图片转换为文字,是多模态任务,属于CV和NLP的交叉领域,因此其编码器部分通常使用CV中的结构,而解码器部分使用NLP中的结构。 

3. 常用方法-Encoder-Decoder 方法

        这是最常见的图像字幕生成框架,其中编码器(通常是 CNN)负责提取图像特征,解码器(通常是 RNN 或 LSTM)生成描述性文本。编码器和解码器之间可能会使用注意力机制,以帮助模型关注图像中最相关的部分。

3.1. 编码器

        主要有五类:

  •  1)Global CNN Features:使用CNN提取全局特征
  •  2)Attention Over Grid of CNN Features:使用CNN获取分块图像特征,这些分块特征作为语言解码器部分的输入;
  •  3)Attention Over Visual Regions:使用检测器提取图像中不同对象特征,这些对象特征作为语言解码器部分的输入;
  •  4)Graph-based Encoding:相比于方法3)加上了单独的对象间关系处理部分,使用Graph
  •  5)Self-Attention Encoding:相比于方法3),都加上了单独的对象间关系处理部分,使用自注意力机制。

        结合上文提到的图像字幕任务3个关键因素,方法4)和5)在模型设计上更有效,5)相比于4)在当下(2024-1)更主流,其中基于CLIP(2021)图像编码器的方法最具有潜力。

      

3.2. 解码器

        语言部分和视觉部分一样,都有着比较清晰的路线,从早期的RNN、LSTM到现在主流的Transformer(2017)、BERT(2018)。

4. 常用数据集

MSCOCO(Microsoft Common Objects in Context):这是最广泛使用的图像字幕生成数据集之一,包含超过 12 万张图像,每张图像有 5 条不同的描述。这些描述由人类标注,覆盖了广泛的场景和物体。

Flickr8k 和 Flickr30k:这两个数据集分别包含 8000 和 30000 张图像,每张图像也都有多个自然语言描述。它们广泛用于基准测试和模型评估。

Visual Genome:这是一个更大规模的数据集,包含丰富的物体、属性和关系标注,适合进行更复杂的图像理解和字幕生成任务。

这篇关于图像字幕Image Captioning——使用语法和语义正确的语言描述图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118315

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl