【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder

本文主要是介绍【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. fuser模块
  • 2. decoder模块
    • 2.1 backbone模块
    • 2.2 neck模块


BEVFusion相关的其他文章链接:

  1. 【论文阅读】ICRA 2023|BEVFusion:Multi-Task Multi-Sensor Fusion with Unified Bird‘s-Eye View Representation
  2. MIT-BEVFusion训练环境安装以及问题解决记录
  3. 【MIT-BEVFusion代码解读】第一篇:整体结构与config参数说明
  4. 【MIT-BEVFusion代码解读】第二篇:LiDAR的encoder部分
  5. 【MIT-BEVFusion代码解读】第三篇:camera的encoder部分
  6. 【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder

1. fuser模块

fuser模块的作用是将LiDARcamera得到的BEV特征进行融合,这里使用的ConvFuser方法将两个BEV特征融合。

x = self.fuser(features)

LiDAR=>[4, 256, 180, 180]camera => [4, 80, 180, 180]进行concat得到 => [4, 336, 180, 180],然后再卷积得到 =>[4, 256, 180, 180],具体代码如下。

class ConvFuser(nn.Sequential):def __init__(self, in_channels: int, out_channels: int) -> None:self.in_channels = in_channels # [80, 256]self.out_channels = out_channels # 256super().__init__(nn.Conv2d(sum(in_channels), out_channels, 3, padding=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(True),)def forward(self, inputs: List[torch.Tensor]) -> torch.Tensor:# 先进行concat,然后调用父类的卷积模块return super().forward(torch.cat(inputs, dim=1))

融合的结构如下所示:

ConvFuser((0): Conv2d(336, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)
)

2. decoder模块

decoder部分由两部分组成,分别是backboneneck,其中backbone使用的是SECONDneck部分使用的是SECONDFPN
在这里插入图片描述

2.1 backbone模块

backbone使用的SECOND,和默认的layer_nums=[3, 5, 5]结构不一样,BEVFusion中使用的layer_nums=[5, 5]。所以backbone只有两个分支,都是5个卷积模块组成。

        outs = []for i in range(len(self.blocks)):x = self.blocks[i](x)outs.append(x)return tuple(outs)
  • 分支一:

第一个分支的输入是fuser的输出,它的大小为[4, 256, 180, 180],首先经过第一个Con2d将通道降至128,后面再接5个相同的Con2d提取特征,得到outs[0]的大小为[4, 128, 180, 180]

Sequential((0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(4): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(5): ReLU(inplace=True)(6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(7): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(8): ReLU(inplace=True)(9): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(10): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(11): ReLU(inplace=True)(12): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(13): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(14): ReLU(inplace=True)(15): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(16): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(17): ReLU(inplace=True)
)
  • 分支二:

第二个分支的输入是out[0],这个分支首先经过第一个Conv2d,将通道数128上至256,并且将feature map的长和宽都减半至90,然后在经过5个相同的Conv2d提取特征,最后得到特征outs[1]的大小为[4, 256, 90, 90]

Sequential((0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(4): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(5): ReLU(inplace=True)(6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(7): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(8): ReLU(inplace=True)(9): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(10): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(13): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(14): ReLU(inplace=True)(15): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(16): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(17): ReLU(inplace=True)
)

2.2 neck模块

neck的作用是将backbone得到的feature map调整至指定大小[4, 256, 180, 180]

由于backbone得到了两个大小不同的feature map,分别为[4, 128, 180, 180][4, 256, 90, 90],第一个特征使用卷积降低通道数即可,第二个则需要反卷积来提升feature map的大小,实际上源代码也是这么做的。最后将得到两个分支的特征进行concat即可。

        assert len(x) == len(self.in_channels)# self.deblocks一共有两个,一个是卷积,一个是反卷积ups = [deblock(x[i]) for i, deblock in enumerate(self.deblocks)]# concat两个分支featureif len(ups) > 1:out = torch.cat(ups, dim=1)else:out = ups[0]return [out]

self.deblocks中第一个元素的卷积结构如下:

Sequential((0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU(inplace=True)
)

self.deblocks中第二个元素的反卷积结构如下:

Sequential((0): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2), bias=False)(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU(inplace=True)
)

将两个分支concat得到的feature map大小为:[4, 512, 180, 180]

这篇关于【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118244

相关文章

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase