人工智能算力FP32、FP16、TF32、BF16、混合精度解读

2024-08-29 13:12

本文主要是介绍人工智能算力FP32、FP16、TF32、BF16、混合精度解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

de94325234483a4035ca41ff58655cf0.jpeg 

彻底理解系列之:FP32、FP16、TF32、BF16、混合精度

   

随着大模型的涌现,训练和推理速度成为关键。为提升速度,需减小数据长度以降低存储和带宽消耗。为此,我专注学习并整理了各种精度细节,确保深入理解而非浅尝辄止。

1 从FP32说起

计算机处理数字类型包括整数类型和浮点类型,IEEE 754号标准定义了浮点类型数据的存储结构。一个浮点数由三部分组成:符号位、指数位和尾数位。其中,以最常见的FP32(Float Point 32)为例,其符号位占1位,指数位占8位,尾数位占23位 。

809215fe7bd4dc462be163a349bca6b9.jpeg

图1. FP32位数分配,来源[2]

  • Sign:最高位用1位表示符号位,1表示负数,0表示正数,记为S
  • Exponent:中间8位表示指数位,记为E
  • Mantissa:低位23位表示小数部分,记为M

我们以十进制数9.625为例,看看十进制和FP32二进制之间如何转换:

十进制--》二进制

先分为整数部分9和小数部分0.625。

将9转换为二进制1001,然后通过乘以2并取整数部分的方式得到0.625。接着,将剩余的小数部分0.625再乘以2并取整数部分,如此循环,最终得到0.101。将这两个结果相加,即1001.101,转换为二进制指数形式为1.001101 * 2^3。

根据IEEE 754标准,FP32的指数部分需要加上127以进行偏移,调整为3+127=130。对应的二进制表示为10000010,小数部分补齐至23位后,符号位为0。将这三部分组合起来,便得到了FP32的表示。

0 10000010 00110100000000000000000。

1a183ef532c880952d2b125992522465.jpeg

图2. FP32转换工具,来源[3]

二进制--》十进制

将二进制分为S、E、M三部分,将FP32转换为十进制的方法如下:

$S=B_2+B_1+...+B_0$

$E=G_2+G_1+...+G_0$

$M=P_2+P_1+...+P_0$

51d18df27372cf0a3749eb34374c8a6e.jpeg

文章内容经过优化后如下:
"其中,1.M表示小数部分的二进制表示。以S=0,E二进制10000010转为十进制为130为例,M为00110100000000000000000。去掉小数部分后面的无用零后,得到1.M实际上是二进制的1.001101,转换为十进制就是:×"

5a44f071dcb3fbbea50ad272c5f646d2.jpeg

顺利还原回了十进制数。

FP32搞清楚了,FP16、FP64类似,只是指数位和小数位的长度不一样:


2 模型训练中不同精度的问

降低存储负担:提高训练显存利用率至FP32,实现一半存储占用,从而在有限的GPU资源下训练更大模型或提高batch_size。

FP16和FP32都是深度学习中常用的数值表示方式。FP16是16位浮点数表示法,即半精度浮点数,用一个16位的数值来表示实数,包括1位符号位、5位指数位和10位尾数位。FP16的精度比FP32低,但计算速度快,内存占用小,因此在深度学习中常用于加速训练和推理。FP32是32位浮点数表示法,即单精度浮点数,用一个32位的数值来表示实数,包括1位符号位、8位指数位和23位尾数位。FP32是深度学习中最常用的数值表示方式之一,因为它提供了足够的精度和计算速度,同时也相对容易实现。

但是,是否意味着我们都使用FP16就行了呢?当然不是。主要原因是位数少同时有两个劣势:(1)精度较低;(2)存储空间较大。

  1. 位数少时精度比位数多时低,可能导致准确度不够;
  2. 位数少时表示的范围比位数多时要小,可能导致数据溢出,装不下了。

先看看精度问题,以下是用FP64、FP32、FP16表示1/3时不同的精度:

5b9e51110330d61a88183b8c5fbc71ad.jpeg

提高精度,确保数据表示和计算的准确性,使模型训练拟合出的参数更精确。这取决于我们对模型精度的具体要求。

186251574ad67f11825cbcf299d8c248.jpeg

我们用一个大数10^6看看二者能否表示:

77d15f0debcce87f6987dc66035d3a6c.jpeg

3混合精度

c325ac273d2f270636496b464420fe54.jpeg

图3. 混合精度使用流程,来源[1]

  1. 把神经网络权重参数由初始化的FP32转为FP16;
  2. 用FP16进行前向和后向计算,并进行梯度计算;
  3. 把FP16的梯度转为FP32;
  4. 使用FP32的梯度和学习率learning rate相乘;
  5. 使用FP32更新网络权重,得到FP32的更新后的权重。

使用FP32更新权重的时候,梯度乘上学习率后一般数值都比较小,因此使用FP32能防止精度不够。

在混合精度训练中,采用"损失缩放"技术以防止数值过小导致精度损失。首先,将损失扩大一倍,使其位于FP16可表示范围内;然后进行反向计算;最后,将梯度缩小相同的倍数,以确保最终数值的准确性。

DistilBERT模型在电影情感分类任务上进行了微调,通过比较FP32、FP16和混合使用性能及准确率,展示了其优越性。

0e3ec639240e06cf538857166c86ae2e.jpeg

图4. FP32、FP16和混合精度训练对比,来源[1]

如图4所示,混合精度训练时间与FP16相当,约为FP32的1/3,且使用的存储空间介于二者之间。尽管预测准确率与FP32相近,甚至更高,但作者认为这可能是因为正则化的影响。相较之下,FP16的预测准确率较低,可能是由于训练过程中数据溢出导致模型失准。

4BF16、TF32

FP16的指数和尾数限制了其可表示的数据范围,因此谷歌为深度学习引入了BF16格式。BF16与FP16共享相同的16位总长度,但将指数位从5位扩展至8位,小数位数则缩短至7位,从而扩大了整数表示范围。

英伟达为满足GPU需求,推出了TF32数据类型,具有8位指数、10位小数(与FP16相同),相较于BF16多出3位小数。

061f7c2d977f62be915e71b6a18411b6.jpeg

图5. BF16、TF32位数,来源:英伟达白皮书

d794807a5124cc2c7c5bfdbf0105bf81.jpeg

图6. 各种精度综合对比


BF16是一种高效的数据格式,具有较短的计算时间(与FP16相当)和较少的存储需求(小数位数较少)。同时,它在准确性方面表现出色,达到了92%,与其他同类格式相当。这些优势使得BF16成为一种值得关注的技术选择。


到此结束,我们搞清楚了各种浮点类型的定义、转换、模型训练时如何使用,以及性能对比。

-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

这篇关于人工智能算力FP32、FP16、TF32、BF16、混合精度解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117957

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何用GPU算力卡P100玩黑神话悟空?

精力有限,只记录关键信息,希望未来能够有助于其他人。 文章目录 综述背景评估游戏性能需求显卡需求CPU和内存系统需求主机需求显式需求 实操硬件安装安装操作系统Win11安装驱动修改注册表选择程序使用什么GPU 安装黑神话悟空其他 综述 用P100 + PCIe Gen3.0 + Dell720服务器(32C64G),运行黑神话悟空画质中等流畅运行。 背景 假设有一张P100-

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

[Day 73] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

AI在健康管理中的應用實例 1. 引言 隨著健康管理需求的提升,人工智能(AI)在該領域的應用越來越普遍。AI可以幫助醫療機構提升效率、精準診斷疾病、個性化治療方案,以及進行健康數據分析,從而改善病患的健康狀況。這篇文章將探討AI如何應用於健康管理,並通過具體代碼示例說明其技術實現。 2. AI在健康管理中的主要應用場景 個性化健康建議:通過分析用戶的健康數據,如飲食、運動、睡眠等,AI可

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互