多机多卡分布式训练的一种简易实现

2024-08-29 01:12

本文主要是介绍多机多卡分布式训练的一种简易实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 前言
  • 2. pssh技术
    • 2.1 pssh简介
    • 2.2 pssh使用
  • 3. 多机互连
  • 4. 一键分布式训练
    • 4.1 全局变量
    • 4.2 在tmux中启动run.sh
    • 4.3 在master节点上进行启动

1. 前言

在没有机器学习平台(例如阿里云的PAI,美团的万象等)的情况下,启动多机多卡分布式训练通常需要手动在每台机器上启动相应的训练脚本,而启动脚本的前提是要先ssh连接到这台机器,甚是麻烦。

本文给出了一种简易的方法,只需要在master节点上启动一次脚本,就可以同时在master节点和所有的worker节点上启动对应的训练脚本,且无需对训练脚本配置任何参数。

2. pssh技术

2.1 pssh简介

pssh 又称 Parallel SSH,其核心是ssh,用于并行地在多台机器上执行相同的命令。

安装 pssh

pip install git+https://github.com/lilydjwg/pssh

如果不从git上安装最新版的,可能会在使用的过程中出现 ModuleNotFoundError: No module named 'version' 这个错误,原因是旧版的 pssh 默认采用绝对导入的方式,而 version 实际上是psshlib下的一个Python文件。

要使用 pssh,我们通常需要一个 host_file,该文件的每一行都存放了一个「节点」,以 user@host[:port] 的格式进行表示。特别地,当端口号为 22 时,:port 可以省略。

⚠️ 执行 pssh 命令的主机通常是master节点,如果没有配置master节点到其他所有worker节点的免密登录,那么 pssh 将执行失败。

host_file 通过 -h 选项进行指定,除此之外,我们还可以使用 -i 选项,它将对应节点的stdout和stderr都重定向至master节点。

2.2 pssh使用

假设 host_file 的内容如下(一共有4个worker节点):

root@10.231.95.171
root@10.231.95.172
root@10.231.95.173
root@10.231.95.174

我们在master节点上执行

pssh -ih host_file "echo 1"

那么4个work节点上均会执行 echo 1 这个命令,且结果会返回给master节点。

3. 多机互连

前面提到过,pssh 能够成功执行的前提是master节点可以免密登录到所有的worker节点。考虑到现实情况中,任何一个节点都有可能成为master节点,因此我们需要配置两两节点之间的免密登录。

假设有 N N N 台机器,要实现上述的需求,需要配置 2 ⋅ C N 2 + N = N 2 2\cdot C_N^2+N=N^2 2CN2+N=N2 次(master节点也会参与训练,所以需要确保自己能够免密登录自己),手动去一个个 ssh-copy-id 显然是不现实的,我们需要一个自动化的Shell脚本来帮助我们完成这个需求。

这里依然使用 host_file,并假设在互连阶段,所有的节点是等同的。到了实际训练阶段,第一行对应的节点将作为master节点。为简便起见,假设所有节点对外开放的端口号都是相同的。

MACHINES=()
PORT=""while IFS= read -r line; doif [[ "$line" =~ ":" ]]; thenmachine=$(echo "$line" | awk -F':' '{print $1}')[ -z "$PORT" ] && PORT=$(echo "$line" | awk -F':' '{print $2}')elsemachine=$line[ -z "$PORT" ] && PORT=22fiMACHINES+=("$machine")
done < "./host_file"

在获取了每台机器的地址后,我们可以开一个哈希表,用来存储每台机器上的公钥。注意,在存储之前,需要先检查当前机器上是否存在公钥。

declare -A PUBLIC_KEYSfor machine in "${MACHINES[@]}"; doPUBLIC_KEYS["$machine"]=$(ssh -p $PORT "$machine" '[[ -f ~/.ssh/id_rsa.pub ]] || ssh-keygen -t rsa -f ~/.ssh/id_rsa -q -N ""; cat ~/.ssh/id_rsa.pub')
done

之后,对于 host_file 里列出的每台机器,我们都把 PUBLIC_KEYS 里存储的所有公钥注入其中,这个过程的时间复杂度是 O ( N 2 ) O(N^2) O(N2) 的。

for machine in "${MACHINES[@]}"; dofor key in "${PUBLIC_KEYS[@]}"; dossh -p $PORT "$machine" "echo $key >> ~/.ssh/authorized_keys"done
done

完整的Shell脚本如下:

#!/bin/bashMACHINES=()
PORT=""
declare -A PUBLIC_KEYSwhile IFS= read -r line; doif [[ "$line" =~ ":" ]]; thenmachine=$(echo "$line" | awk -F':' '{print $1}')[ -z "$PORT" ] && PORT=$(echo "$line" | awk -F':' '{print $2}')elsemachine=$line[ -z "$PORT" ] && PORT=22fiMACHINES+=("$machine")
done < "./host_file"for machine in "${MACHINES[@]}"; doPUBLIC_KEYS["$machine"]=$(ssh -p $PORT "$machine" '[[ -f ~/.ssh/id_rsa.pub ]] || ssh-keygen -t rsa -f ~/.ssh/id_rsa -q -N ""; cat ~/.ssh/id_rsa.pub')
donefor machine in "${MACHINES[@]}"; dofor key in "${PUBLIC_KEYS[@]}"; dossh -p $PORT "$machine" "echo $key >> ~/.ssh/authorized_keys"done
done

4. 一键分布式训练

4.1 全局变量

假设训练脚本为 run.sh,在多机多卡情景下,该脚本通常需要接收5个参数,如下:

GPUS_PER_NODE=${1}
NNODES=${2}
NODE_RANK=${3}
MASTER_ADDR=${4}
MASTER_PORT=${5}

以Megatron-LM框架为例,这五个参数将用于后续 torchrun 进程的启动:

#!/bin/bashexport CUDA_DEVICE_MAX_CONNECTIONS=1
export OMP_NUM_THREADS=1LAUNCHER=" \torchrun \--nproc_per_node ${GPUS_PER_NODE} \--nnodes ${NNODES} \--node_rank ${NODE_RANK} \--master_addr ${MASTER_ADDR} \--master_port ${MASTER_PORT} \"export CMD=" \${LAUNCHER} \${SRC_PATH} \${OTHER_MEGATRON_ARGS} \"killall python
echo ${CMD}
${CMD} 2>&1 | tee ${LOG_PATH}

其中 GPUS_PER_NODE 通常是8,NNODES 是参与训练的机器的数量,NODE_RANK 是每台机器的编号,MASTER_* 是master节点的相关参数。可以看出,只有 NODE_RANK 会取决于当前节点,而其他参数都是可以事先决定的。该参数可以由每台机器的内网IPhost_file 中的行索引来决定。

为了代码的可维护性,将这五个变量的计算单独放入一个Shell脚本里是一个不错的选择(假设脚本名为 global_vars.sh)。每当我们要在一台机器上启动 run.sh 时,可以先执行 ./global_vars.sh,这样一来,独属于这台机器的五个变量就会被导入,训练就能够有条不紊地进行。

注意到当我们使用 pssh 并行地连接到每台机器上执行 run.sh 时,每台机器是不知道自己的内网IP的,我们只能通过 hostname -I 来获取当前机器的所有IP,然后尝试去一个个匹配 host_file,如果匹配成功,则取相应的行索引作为当前机器的 NODE_RANK

首先读取 host_file 并通过正则表达式抓取其中的所有IP,然后通过 hostname -I 来获取本机的所有IP:

HOST_FILE=./host_file
host_ips=$(grep -oE '([0-9]{1,3}\.){3}[0-9]{1,3}' ${HOST_FILE})
local_ips=$(hostname -I)

接下来就可以基于这些信息计算之前上文提到的五个变量了:

GPUS_PER_NODE=8  # 视实际情况写死
NNODES=$(awk 'END{print NR}' ${HOST_FILE})
NODE_RANK=-1
MASTER_ADDR=$(echo "$host_ips" | head -n 1)
MASTER_PORT=$(shuf -n 1 -i 10000-65535)

假设 host_ips 的长度为 n n nlocal_ips 的长度为 m m m,如果通过暴力遍历去匹配的话,时间复杂度将达到惊人的 O ( n m ) O(nm) O(nm),这是不可接受的。事实上,我们可以事先开一个哈希表将每个host_ip及其对应的索引存下来(类似于 unordered_map<string, int>),之后在遍历 local_ips 的时候,我们就可以在 O ( 1 ) O(1) O(1) 的时间内完成查找,时间复杂度会降低至 O ( n + m ) O(n+m) O(n+m)

declare -A host_ip_map
count=0for host_ip in $host_ips; dohost_ip_map["$host_ip"]=$countcount=$((count + 1))
donefor local_ip in $local_ips; doif [[ -n "${host_ip_map[$local_ip]}" ]]; thenNODE_RANK=${host_ip_map[$local_ip]}breakfi
done[ $NODE_RANK -eq -1 ] && echo "Failed to set NODE_RANK: Local IP not found in host file." && exit 1

完整的 global_vars.sh 的内容如下:

#!/bin/bashHOST_FILE=./host_file
host_ips=$(grep -oE '([0-9]{1,3}\.){3}[0-9]{1,3}' ${HOST_FILE})
local_ips=$(hostname -I)GPUS_PER_NODE=8
NNODES=$(awk 'END{print NR}' ${HOST_FILE})
NODE_RANK=-1
MASTER_ADDR=$(echo "$host_ips" | head -n 1)
MASTER_PORT=$(shuf -n 1 -i 10000-65535)declare -A host_ip_map
count=0for host_ip in $host_ips; dohost_ip_map["$host_ip"]=$countcount=$((count + 1))
donefor local_ip in $local_ips; doif [[ -n "${host_ip_map[$local_ip]}" ]]; thenNODE_RANK=${host_ip_map[$local_ip]}breakfi
done[ $NODE_RANK -eq -1 ] && echo "Failed to set NODE_RANK: Local IP not found in host file." && exit 1

4.2 在tmux中启动run.sh

4.1节中的所有工作仅仅是为了计算五个变量,这些变量将广播至后续的子Shell中以帮助启动 run.sh。需要注意的是,直接启动 run.sh 往往是很危险的,一种合理的做法是创建一个tmux的session,并在该session内启动 run.sh。我们可以通过指定 -d 选项以在后台启动tmux。

假设脚本名为 distributed_run.sh,其内容如下:

#!/bin/bash. ./global_vars.shENV_PATH=/path/to/your/conda_env
TMUX_NAME=pretrain  # 可自定义名称tmux kill-session -t ${TMUX_NAME} 2>/dev/null
tmux new -ds ${TMUX_NAME}
tmux send-keys -t ${TMUX_NAME} "conda activate ${ENV_PATH}" C-mMEGATRON_PATH=/path/to/your/megatron
SCRIPT_PATH=${MEGATRON_PATH}/run.sh
TRAIN_CMD="bash ${SCRIPT_PATH} ${GPUS_PER_NODE} ${NNODES} ${NODE_RANK} ${MASTER_ADDR} ${MASTER_PORT}"tmux send-keys -t ${TMUX_NAME} "${TRAIN_CMD}" C-m

有了该脚本,我们只需要并行地在每台机器上启动这个脚本就可以启动分布式训练了。

4.3 在master节点上进行启动

我们需要在master节点上执行pssh以在所有参与训练的节点上启动 distributed_run.sh

⚠️ 注意,以上提到的所有脚本都应当放在共享存储下,且其中的路径应当尽可能地采用绝对路径,这样无论在哪台机器上执行脚本,都不会出现 No such file or directory 的报错了。

截至目前,本文提到的所有脚本均在同一目录下。假设在master节点上一键启动的脚本名为 launch.sh,我们可以先获取该脚本所在目录的绝对路径,然后将这一路径作为环境变量广播至所有子Shell中,这样之后的所有Shell都可以使用这一绝对路径了。

#!/bin/bashDC_WORK_DIR=$(realpath "$(dirname "$0")")
pssh -ih host_file "export DC_WORK_DIR=${DC_WORK_DIR}; bash ${DC_WORK_DIR}/distributed_run.sh"

其他脚本中的相对路径也要改成带有 ${DC_WORK_DIR} 的绝对路径,之后,我们只需要在master节点上执行如下命令,就可以一键启动多机多卡分布式训练了:

bash launch.sh

这篇关于多机多卡分布式训练的一种简易实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116416

相关文章

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机