大模型实战-FinGLM解析金融财报做RAG经验参考篇

2024-08-28 18:44

本文主要是介绍大模型实战-FinGLM解析金融财报做RAG经验参考篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型实战-FinGLM金融财报解析实战

https://modelscope.cn/datasets/modelscope/chatglm_llm_fintech_raw_dataset/summary

详细解读:

https://modelscope.cn/models/finglm/FinGLM/summary

背景:解读pdf版本的公司财务年报,构建问答模型,能回答一些金融领域相关的问题。包含答案抽取,以及答案推理。

一 数据处理步骤

以下是我们推荐的处理步骤:

1、**PDF文本和表格提取:**您可以使用如pdfplumber、pdfminer等工具包提取PDF文件中的文本和表格数据。

「pdfplumber:」pdfplumber库按页处理 pdf ,获取页面文字,提取表格等操作。学习文档:https://github.com/jsvine/pdfplumber「pypdf2:」PyPDF2 是一个纯 Python PDF 库,可以读取文档信息(标题,作者等)、写入、分割、合并PDF文档,它还可以对pdf文档进行添加水印、加密解密等。官方文档:https://pythonhosted.org/PyPDF2

2、数据切分:根据PDF文件的目录、子目录和章节信息,对内容进行精确的切块处理。

3、构建基础金融数据库:依据金融知识和PDF内容,设计专业的金融数据库字段和格式。例如,定义资产负债表、现金流量表和利润表等。

4、信息提取:使用大模型的信息提取能力和NLP技术来抽取对应的金融字段信息。例如,请使用json方式输出目录的内容,其中章节的名称作为key,页码作为value。同时,请详细地抽取表格内的数据,以JSON格式输出。

5、构建金融知识问答库:结合构建的金融数据库,应用大模型构建基础的金融问答库。例如,

    {"question":"某公司2021年的财务费用为多少元?", "answer": "某公司2021年的财务费用为XXXX元。"}prompt:用多种句式修改question及answer的内容。{"question":"为什么财务费用可以是负的?", "answer": ""}prompt:请模仿上面的question给出100个类似的问题与对应的答案,用json输出。

6、构建向量库:借助于如Word2Vec、Text2Vec等技术,从原始文本数据中提取出语义向量。使用pgvector这种基于PostgreSQL的扩展来存储和索引这些向量,从而建立起一个可供高效查询的大规模向量库。

7、应用:结合向量库、大模型、langchain等工具,提升应用效果。

二 实战教程参考
https://tianchi.aliyun.com/forum/post/573555
https://zhuanlan.zhihu.com/p/659585193  [大模型绝密技巧]ChatGLM金融开源FinGLM学习笔记,让你升职加薪!
https://zhuanlan.zhihu.com/p/648760946  SMP 2023金融大模型挑战赛实践优化调试分享(三https://www.zhihu.com/question/585107192/answer/3196812752 ChatGPT实现自然语言转SQL有采用特定的算法或模型吗?
https://zhuanlan.zhihu.com/p/648860146?spm=a2c22.21852664.0.0.225e41f48Z5Swa SMP 2023 chatglm大模型比赛第一名经验总结https://lslfd0slxc.feishu.cn/base/GaJqbfQpRatYkRsf6Ioc0D7ynfb?table=tblrZ5Aq8iM6X4i3&view=vewQx72054  一些问题的答疑https://space.bilibili.com/3493270982232856/channel/collectiondetail?sid=1610943  b站视频讲解
三 详解步骤
1 数据处理 pdf转txt

image-20231010114216188

2.数据入库,提取pdf中表格的数据,变成结构化数据,入数据库

image-20231010114234353

3.回答问题

1)首先对输入问句做问句分类,也就是意图识别,看是哪类问题
前提:总结问题都有哪些类型。
问题类型识别:可以关键词,或者问法写规则

2)再次提取句子中的实体,定义关键实体:时间,公司,字段

3)不同问题类型,构建prompt,需要使用实体上文提到的实体。
#如果是计算题,大模型效果不好,需要给示例让大模型计算。如果直接提取数据定义公式,计算出结果, 再放到prompt中,拼接生成答案。

#如果是开放题,世界让大模型回答

#不能给大模型太多信息,不然它会找不到

​ 4)prompt转为sql从存储数据库中查数据

image-20231010114353221

  1. 具体详细流程

    https://mp.weixin.qq.com/s/-eA2yfcutjE-kinFb1XdGg

图片

5.代码解读

1)数据转txt 、转html

2)收集关键词,调用chatglm组合成mysql命令。

1.FinQwen 金融大模型项目-基于大模型构建金融场景智能问答系统。
比赛介绍 https://tianchi.aliyun.com/competition/entrance/532172/introduction?spm=a2c22.28136470.0.0.d5cd4a0aIgpnA4&from=search-list代码  https://github.com/Tongyi-EconML/FinQwen
可参考的RAG技巧
  1. 对用户输入的query做意图识别,问题分类,不同问题不同处理。也可以用关键词识别意图,来分类问题。

    image-20240710172445377

  2. 基于pymupdf或者pdfplumber解析pdf,最小召回单元为“行"

  3. 对问题做粗召的时候,用Elastic search。

  4. 对用户问题,基于LLM抽取关键词,用关键词做检索,提升检索的准确率。原问题直接用于检索,准确率低。

    image-20240710172401622

  5. 使用少量标注数据,得到微调后的LLM,用该LLM抽取领域内关键词更准确

    采用人工标注少量30-60个样本,微调LLM模型,基本解决了表名列名不匹配问题,能较好理
    
  6. 召回的片段,做精排,用cross-encoder模型或者TF-IDF余弦相似度

    image-20240710172653384

    image-20240711154604898

  7. 对生成的答案,做幻觉检查,对答案做校验与修正,去除冗余,修正单位,或者答案检查再尝试功能。对答案中搜索,如果答案中有:对不起,抱歉,无法 等字眼,就再retry请求答案。

    image-20240710172744162

  8. Prompt的设计很重要

    prompt设计原则:
    • 系统角色定义清晰:(你是一名XX的专家)
    • 清晰明确的任务描述  (任务原则是1 2 3 )
    • 详细的问题拆解与提示:(步骤是 1 2 3) 
    • Few-shot提示样本的多样化:(以下是一些示例,示例1 示例2 )
    • 参考内容在模型输入中的位置: (优先根据文档原文来回答每个问题)
    
  9. 使用金融领域的语料下的embedding模型,或者微调过的embedding模型对输入做embedding。(预训练embedding的语境与金融领域语境差别大)

2.AI大模型用于智能汽车检索问答
天池比赛 https://tianchi.aliyun.com/competition/entrance/532154/introduction?spm=a2c22.28136470.0.0.69114a0axVi2sw&from=search-list
代码
1:Tianchi-LLM-retrieval     https://github.com/poisonwine/Tianchi-LLM-retrieval  
2: tianchi-LLM-QA    https://github.com/aiwq2/tianchi-LLM-QA
3:Tianchi-LLM-QA   https://github.com/dawoshi/Tianchi-LLM-QA?tab=readme-ov-file

这篇关于大模型实战-FinGLM解析金融财报做RAG经验参考篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115577

相关文章

Java使用Tesseract-OCR实战教程

《Java使用Tesseract-OCR实战教程》本文介绍了如何在Java中使用Tesseract-OCR进行文本提取,包括Tesseract-OCR的安装、中文训练库的配置、依赖库的引入以及具体的代... 目录Java使用Tesseract-OCRTesseract-OCR安装配置中文训练库引入依赖代码实

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查