大模型实战-FinGLM解析金融财报做RAG经验参考篇

2024-08-28 18:44

本文主要是介绍大模型实战-FinGLM解析金融财报做RAG经验参考篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型实战-FinGLM金融财报解析实战

https://modelscope.cn/datasets/modelscope/chatglm_llm_fintech_raw_dataset/summary

详细解读:

https://modelscope.cn/models/finglm/FinGLM/summary

背景:解读pdf版本的公司财务年报,构建问答模型,能回答一些金融领域相关的问题。包含答案抽取,以及答案推理。

一 数据处理步骤

以下是我们推荐的处理步骤:

1、**PDF文本和表格提取:**您可以使用如pdfplumber、pdfminer等工具包提取PDF文件中的文本和表格数据。

「pdfplumber:」pdfplumber库按页处理 pdf ,获取页面文字,提取表格等操作。学习文档:https://github.com/jsvine/pdfplumber「pypdf2:」PyPDF2 是一个纯 Python PDF 库,可以读取文档信息(标题,作者等)、写入、分割、合并PDF文档,它还可以对pdf文档进行添加水印、加密解密等。官方文档:https://pythonhosted.org/PyPDF2

2、数据切分:根据PDF文件的目录、子目录和章节信息,对内容进行精确的切块处理。

3、构建基础金融数据库:依据金融知识和PDF内容,设计专业的金融数据库字段和格式。例如,定义资产负债表、现金流量表和利润表等。

4、信息提取:使用大模型的信息提取能力和NLP技术来抽取对应的金融字段信息。例如,请使用json方式输出目录的内容,其中章节的名称作为key,页码作为value。同时,请详细地抽取表格内的数据,以JSON格式输出。

5、构建金融知识问答库:结合构建的金融数据库,应用大模型构建基础的金融问答库。例如,

    {"question":"某公司2021年的财务费用为多少元?", "answer": "某公司2021年的财务费用为XXXX元。"}prompt:用多种句式修改question及answer的内容。{"question":"为什么财务费用可以是负的?", "answer": ""}prompt:请模仿上面的question给出100个类似的问题与对应的答案,用json输出。

6、构建向量库:借助于如Word2Vec、Text2Vec等技术,从原始文本数据中提取出语义向量。使用pgvector这种基于PostgreSQL的扩展来存储和索引这些向量,从而建立起一个可供高效查询的大规模向量库。

7、应用:结合向量库、大模型、langchain等工具,提升应用效果。

二 实战教程参考
https://tianchi.aliyun.com/forum/post/573555
https://zhuanlan.zhihu.com/p/659585193  [大模型绝密技巧]ChatGLM金融开源FinGLM学习笔记,让你升职加薪!
https://zhuanlan.zhihu.com/p/648760946  SMP 2023金融大模型挑战赛实践优化调试分享(三https://www.zhihu.com/question/585107192/answer/3196812752 ChatGPT实现自然语言转SQL有采用特定的算法或模型吗?
https://zhuanlan.zhihu.com/p/648860146?spm=a2c22.21852664.0.0.225e41f48Z5Swa SMP 2023 chatglm大模型比赛第一名经验总结https://lslfd0slxc.feishu.cn/base/GaJqbfQpRatYkRsf6Ioc0D7ynfb?table=tblrZ5Aq8iM6X4i3&view=vewQx72054  一些问题的答疑https://space.bilibili.com/3493270982232856/channel/collectiondetail?sid=1610943  b站视频讲解
三 详解步骤
1 数据处理 pdf转txt

image-20231010114216188

2.数据入库,提取pdf中表格的数据,变成结构化数据,入数据库

image-20231010114234353

3.回答问题

1)首先对输入问句做问句分类,也就是意图识别,看是哪类问题
前提:总结问题都有哪些类型。
问题类型识别:可以关键词,或者问法写规则

2)再次提取句子中的实体,定义关键实体:时间,公司,字段

3)不同问题类型,构建prompt,需要使用实体上文提到的实体。
#如果是计算题,大模型效果不好,需要给示例让大模型计算。如果直接提取数据定义公式,计算出结果, 再放到prompt中,拼接生成答案。

#如果是开放题,世界让大模型回答

#不能给大模型太多信息,不然它会找不到

​ 4)prompt转为sql从存储数据库中查数据

image-20231010114353221

  1. 具体详细流程

    https://mp.weixin.qq.com/s/-eA2yfcutjE-kinFb1XdGg

图片

5.代码解读

1)数据转txt 、转html

2)收集关键词,调用chatglm组合成mysql命令。

1.FinQwen 金融大模型项目-基于大模型构建金融场景智能问答系统。
比赛介绍 https://tianchi.aliyun.com/competition/entrance/532172/introduction?spm=a2c22.28136470.0.0.d5cd4a0aIgpnA4&from=search-list代码  https://github.com/Tongyi-EconML/FinQwen
可参考的RAG技巧
  1. 对用户输入的query做意图识别,问题分类,不同问题不同处理。也可以用关键词识别意图,来分类问题。

    image-20240710172445377

  2. 基于pymupdf或者pdfplumber解析pdf,最小召回单元为“行"

  3. 对问题做粗召的时候,用Elastic search。

  4. 对用户问题,基于LLM抽取关键词,用关键词做检索,提升检索的准确率。原问题直接用于检索,准确率低。

    image-20240710172401622

  5. 使用少量标注数据,得到微调后的LLM,用该LLM抽取领域内关键词更准确

    采用人工标注少量30-60个样本,微调LLM模型,基本解决了表名列名不匹配问题,能较好理
    
  6. 召回的片段,做精排,用cross-encoder模型或者TF-IDF余弦相似度

    image-20240710172653384

    image-20240711154604898

  7. 对生成的答案,做幻觉检查,对答案做校验与修正,去除冗余,修正单位,或者答案检查再尝试功能。对答案中搜索,如果答案中有:对不起,抱歉,无法 等字眼,就再retry请求答案。

    image-20240710172744162

  8. Prompt的设计很重要

    prompt设计原则:
    • 系统角色定义清晰:(你是一名XX的专家)
    • 清晰明确的任务描述  (任务原则是1 2 3 )
    • 详细的问题拆解与提示:(步骤是 1 2 3) 
    • Few-shot提示样本的多样化:(以下是一些示例,示例1 示例2 )
    • 参考内容在模型输入中的位置: (优先根据文档原文来回答每个问题)
    
  9. 使用金融领域的语料下的embedding模型,或者微调过的embedding模型对输入做embedding。(预训练embedding的语境与金融领域语境差别大)

2.AI大模型用于智能汽车检索问答
天池比赛 https://tianchi.aliyun.com/competition/entrance/532154/introduction?spm=a2c22.28136470.0.0.69114a0axVi2sw&from=search-list
代码
1:Tianchi-LLM-retrieval     https://github.com/poisonwine/Tianchi-LLM-retrieval  
2: tianchi-LLM-QA    https://github.com/aiwq2/tianchi-LLM-QA
3:Tianchi-LLM-QA   https://github.com/dawoshi/Tianchi-LLM-QA?tab=readme-ov-file

这篇关于大模型实战-FinGLM解析金融财报做RAG经验参考篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115577

相关文章

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比