RK3568 Android 11 蓝牙BluetoothA2dpSink 获取用于生成频谱的PCM

本文主要是介绍RK3568 Android 11 蓝牙BluetoothA2dpSink 获取用于生成频谱的PCM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

Android 中的 A2DP Sink

A2DP Sink 在 Android 系统中主要用于 接收 其他蓝牙设备(如手机、平板、电脑等)发送过来的 高质量的立体声音频。简单来说,它让你的 Android 设备可以充当一个 蓝牙音箱耳机 的角色。

核心功能:

  • 接收音频流: 通过蓝牙协议接收来自其他设备的音频数据。
  • 解码音频: 将接收到的音频数据解码成可播放的音频格式。
  • 播放音频: 通过设备的扬声器或耳机输出解码后的音频。

应用场景:

  • 无线音箱: 将 Android 设备连接到蓝牙音箱,实现无线音乐播放。
  • 车载蓝牙: 将手机连接到车载蓝牙系统,通过车载音响播放音乐。
  • 蓝牙耳机: 将 Android 设备连接到蓝牙耳机,进行通话或听音乐。

技术实现:

  • BluetoothA2dpSink: Android 提供了 BluetoothA2dpSink 类来实现 A2DP Sink 功能。开发者可以通过这个类来管理 A2DP 连接、控制音频播放等。
  • 蓝牙配置文件: A2DP(Advanced Audio Distribution Profile)是一种蓝牙配置文件,专门用于高质量立体声音频的无线传输。

如何获取音频数据并生成音频频谱?

什么是音乐频谱?
音乐频谱是声音频率的分布图。声音是由不同频率的声波组成的,这些声波的振幅(强度)不同,就形成了不同的音色。频谱图就是将这些频率和振幅的关系用图形表示出来。
在这里插入图片描述

频谱图的组成
  • 横轴: 表示频率,通常以赫兹(Hz)为单位。频率越高,音调越高。
  • 纵轴: 表示振幅,也就是声音的强度。振幅越大,声音越响。
  • 颜色或灰度: 表示不同频率的振幅大小。颜色越深或灰度越高,表示该频率的振幅越大。
频谱图的种类
  • 线性频谱图: 频率轴按线性比例分布,适用于分析整个音频频段。
  • 对数频谱图: 频率轴按对数比例分布,更适合显示低频部分的细节,常用于音频分析。
  • 时频图: 显示声音频率随时间的变化情况,可以直观地看到声音的动态变化。
    在这里插入图片描述
总的来说

音乐频谱是了解声音的重要工具,它不仅能帮助我们更好地理解声音的本质,还能在音乐创作、音频处理等领域发挥重要作用。


在蓝牙音箱的模式下, 如何生成音频频谱?

    在打上RK提供的A2dpSink补丁后, 手机等设备可以通过蓝牙连接播放音乐, RK3568充当蓝牙音箱的角色. 在这种状态下, 系统播放音频并不是采用android上层的MediaPlayerAudioTrack, 所以无法采用常规的方式来生成, 若需要获取播放器的音频频谱, 首先, 需要获得音频的PCM数据.

在蓝牙音箱模式下, 音频的播放器的位置处于android 源码的 system目录下

system/bt/btif/src/btif_avrcp_audio_track.cc

/** Copyright 2015 The Android Open Source Project** Licensed under the Apache License, Version 2.0 (the "License");* you may not use this file except in compliance with the License.* You may obtain a copy of the License at**      http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.* See the License for the specific language governing permissions and* limitations under the License.*/#define LOG_NDEBUG 1
#define LOG_TAG "bt_btif_avrcp_audio_track"#include "btif_avrcp_audio_track.h"#include <aaudio/AAudio.h>
#include <base/logging.h>
#include <utils/StrongPointer.h>#include "bt_target.h"
#include "osi/include/log.h"using namespace android;typedef struct {AAudioStream* stream;int bitsPerSample;int channelCount;float* buffer;size_t bufferLength;
} BtifAvrcpAudioTrack;#if (DUMP_PCM_DATA == TRUE)
FILE* outputPcmSampleFile;
char outputFilename[50] = "/data/misc/bluedroid/output_sample.pcm";
#endifvoid* BtifAvrcpAudioTrackCreate(int trackFreq, int bitsPerSample,int channelCount) {LOG_VERBOSE(LOG_TAG, "%s Track.cpp: btCreateTrack freq %d bps %d channel %d ",__func__, trackFreq, bitsPerSample, channelCount);AAudioStreamBuilder* builder;AAudioStream* stream;aaudio_result_t result = AAudio_createStreamBuilder(&builder);AAudioStreamBuilder_setSampleRate(builder, trackFreq);AAudioStreamBuilder_setFormat(builder, AAUDIO_FORMAT_PCM_FLOAT);AAudioStreamBuilder_setChannelCount(builder, channelCount);AAudioStreamBuilder_setSessionId(builder, AAUDIO_SESSION_ID_ALLOCATE);AAudioStreamBuilder_setPerformanceMode(builder,AAUDIO_PERFORMANCE_MODE_LOW_LATENCY);result = AAudioStreamBuilder_openStream(builder, &stream);CHECK(result == AAUDIO_OK);AAudioStreamBuilder_delete(builder);BtifAvrcpAudioTrack* trackHolder = new BtifAvrcpAudioTrack;CHECK(trackHolder != NULL);trackHolder->stream = stream;trackHolder->bitsPerSample = bitsPerSample;trackHolder->channelCount = channelCount;trackHolder->bufferLength =trackHolder->channelCount * AAudioStream_getBufferSizeInFrames(stream);trackHolder->buffer = new float[trackHolder->bufferLength]();#if (DUMP_PCM_DATA == TRUE)outputPcmSampleFile = fopen(outputFilename, "ab");
#endifreturn (void*)trackHolder;
}void BtifAvrcpAudioTrackStart(void* handle) {if (handle == NULL) {LOG_ERROR(LOG_TAG, "%s: handle is null!", __func__);return;}BtifAvrcpAudioTrack* trackHolder = static_cast<BtifAvrcpAudioTrack*>(handle);CHECK(trackHolder != NULL);CHECK(trackHolder->stream != NULL);LOG_VERBOSE(LOG_TAG, "%s Track.cpp: btStartTrack", __func__);AAudioStream_requestStart(trackHolder->stream);
}void BtifAvrcpAudioTrackStop(void* handle) {if (handle == NULL) {LOG_DEBUG(LOG_TAG, "%s handle is null.", __func__);return;}BtifAvrcpAudioTrack* trackHolder = static_cast<BtifAvrcpAudioTrack*>(handle);if (trackHolder != NULL && trackHolder->stream != NULL) {LOG_VERBOSE(LOG_TAG, "%s Track.cpp: btStartTrack", __func__);AAudioStream_requestStop(trackHolder->stream);}
}void BtifAvrcpAudioTrackDelete(void* handle) {if (handle == NULL) {LOG_DEBUG(LOG_TAG, "%s handle is null.", __func__);return;}BtifAvrcpAudioTrack* trackHolder = static_cast<BtifAvrcpAudioTrack*>(handle);if (trackHolder != NULL && trackHolder->stream != NULL) {LOG_VERBOSE(LOG_TAG, "%s Track.cpp: btStartTrack", __func__);AAudioStream_close(trackHolder->stream);delete trackHolder->buffer;delete trackHolder;}#if (DUMP_PCM_DATA == TRUE)if (outputPcmSampleFile) {fclose(outputPcmSampleFile);}outputPcmSampleFile = NULL;
#endif
}void BtifAvrcpAudioTrackPause(void* handle) {if (handle == NULL) {LOG_DEBUG(LOG_TAG, "%s handle is null.", __func__);return;}BtifAvrcpAudioTrack* trackHolder = static_cast<BtifAvrcpAudioTrack*>(handle);if (trackHolder != NULL && trackHolder->stream != NULL) {LOG_VERBOSE(LOG_TAG, "%s Track.cpp: btPauseTrack", __func__);AAudioStream_requestPause(trackHolder->stream);AAudioStream_requestFlush(trackHolder->stream);}
}void BtifAvrcpSetAudioTrackGain(void* handle, float gain) {if (handle == NULL) {LOG_DEBUG(LOG_TAG, "%s handle is null.", __func__);return;}// Does nothing right now
}constexpr float kScaleQ15ToFloat = 1.0f / 32768.0f;
constexpr float kScaleQ23ToFloat = 1.0f / 8388608.0f;
constexpr float kScaleQ31ToFloat = 1.0f / 2147483648.0f;static size_t sampleSizeFor(BtifAvrcpAudioTrack* trackHolder) {return trackHolder->bitsPerSample / 8;
}static size_t transcodeQ15ToFloat(uint8_t* buffer, size_t length,BtifAvrcpAudioTrack* trackHolder) {size_t sampleSize = sampleSizeFor(trackHolder);size_t i = 0;for (; i <= length / sampleSize; i++) {trackHolder->buffer[i] = ((int16_t*)buffer)[i] * kScaleQ15ToFloat;}return i * sampleSize;
}static size_t transcodeQ23ToFloat(uint8_t* buffer, size_t length,BtifAvrcpAudioTrack* trackHolder) {size_t sampleSize = sampleSizeFor(trackHolder);size_t i = 0;for (; i <= length / sampleSize; i++) {size_t offset = i * sampleSize;int32_t sample = *((int32_t*)(buffer + offset - 1)) & 0x00FFFFFF;trackHolder->buffer[i] = sample * kScaleQ23ToFloat;}return i * sampleSize;
}static size_t transcodeQ31ToFloat(uint8_t* buffer, size_t length,BtifAvrcpAudioTrack* trackHolder) {size_t sampleSize = sampleSizeFor(trackHolder);size_t i = 0;for (; i <= length / sampleSize; i++) {trackHolder->buffer[i] = ((int32_t*)buffer)[i] * kScaleQ31ToFloat;}return i * sampleSize;
}static size_t transcodeToPcmFloat(uint8_t* buffer, size_t length,BtifAvrcpAudioTrack* trackHolder) {switch (trackHolder->bitsPerSample) {case 16:return transcodeQ15ToFloat(buffer, length, trackHolder);case 24:return transcodeQ23ToFloat(buffer, length, trackHolder);case 32:return transcodeQ31ToFloat(buffer, length, trackHolder);}return -1;
}constexpr int64_t kTimeoutNanos = 100 * 1000 * 1000;  // 100 msint BtifAvrcpAudioTrackWriteData(void* handle, void* audioBuffer,int bufferLength) {BtifAvrcpAudioTrack* trackHolder = static_cast<BtifAvrcpAudioTrack*>(handle);CHECK(trackHolder != NULL);CHECK(trackHolder->stream != NULL);aaudio_result_t retval = -1;//return 0;
#if (DUMP_PCM_DATA == TRUE)if (outputPcmSampleFile) {fwrite((audioBuffer), 1, (size_t)bufferLength, outputPcmSampleFile);}
#endifsize_t sampleSize = sampleSizeFor(trackHolder);int transcodedCount = 0;do {transcodedCount +=transcodeToPcmFloat(((uint8_t*)audioBuffer) + transcodedCount,bufferLength - transcodedCount, trackHolder);retval = AAudioStream_write(trackHolder->stream, trackHolder->buffer,transcodedCount / (sampleSize * trackHolder->channelCount),kTimeoutNanos);LOG_VERBOSE(LOG_TAG, "%s Track.cpp: btWriteData len = %d ret = %d",__func__, bufferLength, retval);} while (transcodedCount < bufferLength);return transcodedCount;
}

BtifAvrcpAudioTrackWriteData 函数中可以把PCM数据取出来用, 可以打开 DUMP_PCM_DATA 把蓝牙音频播放的PCM内容保存到本地文件char outputFilename[50] = "/data/misc/bluedroid/output_sample.pcm";中, 把文件拿出来用工具打包成WAV格式, 测试音频数据的正确性!

拿到PCM数据后, 通过算法, 便可以轻松实现音频频谱功能.

参考

  • Android 音频可视化:频谱特效的探索与实践
  • android获取和展示音乐的频谱
  • [RK3566-Android11] 关于 a2dpsink -蓝牙支持接收播放/无PIN码连接
  • Android 音频可视化

这篇关于RK3568 Android 11 蓝牙BluetoothA2dpSink 获取用于生成频谱的PCM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115448

相关文章

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

Android里面的Service种类以及启动方式

《Android里面的Service种类以及启动方式》Android中的Service分为前台服务和后台服务,前台服务需要亮身份牌并显示通知,后台服务则有启动方式选择,包括startService和b... 目录一句话总结:一、Service 的两种类型:1. 前台服务(必须亮身份牌)2. 后台服务(偷偷干

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

java获取图片的大小、宽度、高度方式

《java获取图片的大小、宽度、高度方式》文章介绍了如何将File对象转换为MultipartFile对象的过程,并分享了个人经验,希望能为读者提供参考... 目China编程录Java获取图片的大小、宽度、高度File对象(该对象里面是图片)MultipartFile对象(该对象里面是图片)总结java获取图片

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

Java如何获取视频文件的视频时长

《Java如何获取视频文件的视频时长》文章介绍了如何使用Java获取视频文件的视频时长,包括导入maven依赖和代码案例,同时,也讨论了在运行过程中遇到的SLF4J加载问题,并给出了解决方案... 目录Java获取视频文件的视频时长1、导入maven依赖2、代码案例3、SLF4J: Failed to lo

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

使用Java实现获取客户端IP地址

《使用Java实现获取客户端IP地址》这篇文章主要为大家详细介绍了如何使用Java实现获取客户端IP地址,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 首先是获取 IP,直接上代码import org.springframework.web.context.request.Requ

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取

C/C++通过IP获取局域网网卡MAC地址

《C/C++通过IP获取局域网网卡MAC地址》这篇文章主要为大家详细介绍了C++如何通过Win32API函数SendARP从IP地址获取局域网内网卡的MAC地址,感兴趣的小伙伴可以跟随小编一起学习一下... C/C++通过IP获取局域网网卡MAC地址通过win32 SendARP获取MAC地址代码#i