本文主要是介绍hdu 3032 Nim or not Nim? 博弈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目大意:
Alice和Bob轮流取N堆石子,每堆S[i]个,Alice先,每一次可以从任意一堆中拿走任意个石子,也可以将一堆石子分为两个小堆。先拿完者获胜。(1 ≤ N ≤ 10^6, 1 ≤ S[i] ≤ 2^31 - 1)
做到这道题目我想到了以前的一道题目和尼姆博弈尼姆博弈--------->>>>点击打开链接(以前的题目)
可以看到S[i]的值可能非常大,如果计算每一堆的sg值是不现实的,所以需要我们找规律来计算给定的石堆的sg值。
找了半天规律,但是WA了,说明规律不对。
此题为博弈中的—取走-分割游戏(这种游戏允许取走某些东西,然后将原来的一个游戏分成若干个相同的游戏)
例1:Lasker's Nim游戏:每一轮允许两会中操作之一:①、从一堆石子中取走任意多个,②、将一堆数量不少于2的石子分成都不为空的两堆。
分析:很明显:sg(0) = 0,sg(1) = 1。
下面括号里面的是可以分得情况,相当于分成两个游戏进行异或即可
状态2的后继有:0,1和(1,1),他们的SG值分别为0,1,0,所以sg(2) =2。
状态3的后继有:0、1、2、(1,2),他们的SG值分别为0、1、2、3,所以sg(3) = 4。
状态4的后继有:0、1、2、3、(1,3)和(2,2),他们的SG值分别为0,1,2,4,5,0,所以sg(4) = 3.
再推一些,推测得到:对于所有的k >= 0,有 sg( 4k+1 ) = 4k+1; sg( 4k+2 ) = 4k+2; sg( 4k+3 ) = 4k+4; sg( 4k+4 ) = 4k+3。
假设游戏初始时有3堆,分别有2、5和7颗石子。三堆的SG函数值分别为2、5、8,他们的Nim和等于15.所以要走到P状态,就要使得第三堆的SG值变成7,可以将第三对按1和6分成两堆。
Description
Nim is a two-player mathematic game of strategy in which players take turns removing objects from distinct heaps. On each turn, a player must remove at least one object, and may remove any number of objects provided they all come from the same heap.
Nim is usually played as a misere game, in which the player to take the last object loses. Nim can also be played as a normal play game, which means that the person who makes the last move (i.e., who takes the last object) wins. This is called normal play because most games follow this convention, even though Nim usually does not.
Alice and Bob is tired of playing Nim under the standard rule, so they make a difference by also allowing the player to separate one of the heaps into two smaller ones. That is, each turn the player may either remove any number of objects from a heap or separate a heap into two smaller ones, and the one who takes the last object wins.
Output
For each test case, output a line which contains either "Alice" or "Bob", which is the winner of this game. Alice will play first. You may asume they never make mistakes.
Sample Output
其实很简单,但是前几天做题就做过一道sg函数的题目不太会,这次又参考了别人的才会的
sg打表:
/*#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
#define N 1000001
using namespace std;
int sg[N];
int g(int x)
{int mex[1000];memset(mex,0,sizeof(mex));if(sg[x]!=-1) return sg[x];for(int i=x-1; i>=0; i--){mex[g(i)]=1;}for(int i=1; i<=x/2; i++){int ans=0;ans^=g(i);ans^=g(x-i);mex[ans]=1;}for(int i=0;; i++)if(!mex[i]) return sg[x]=i;
}
int main()
{int t , n ,x ;memset(sg,-1,sizeof(sg));sg[0]=0;g(100);for(int i=0; i<=100; i++){cout<<sg[i]<<" ";if(i%10==0)printf("\n");}cout<<endl;return 0;
}*/
/*
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>using namespace std;
#define LL long long
int sg[110000];//sg函数值打表代码
int getsg(int x)
{int ans, i;int mex[11000];memset(mex,0,sizeof(mex));for(i=x-1; i>=0; i--)//当选择拿出石子时的sg后继标记{mex[sg[i]]=1;}for(i=1; i<=x/2; i++)//当选择分成两堆时的sg后继标记{ans=0;ans^=sg[i];ans^=sg[x-i];mex[ans]=1;}for(i=0;; i++)//最小的非sg后继数{if(!mex[i]){sg[x]=i;return sg[x];}}
}
int main()
{int t, n, x, sum, i;sg[0]=0;for(i=0; i<100; i++){getsg(i);printf("%d ",sg[i]);if(i%10==0)printf("\n");}return 0;
}
*/
AC代码:
#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
#define N 1000001
using namespace std;
int main()
{int t;scanf("%d",&t);while(t--){int n;scanf("%d",&n);int ans=0;for(int i=0; i<n; i++){int a;scanf("%d",&a);if(a%4==0)ans^=(a-1);else if(a%4==1)ans^=a;else if(a%4==2)ans^=a;elseans^=a+1;}if(ans==0)printf("Bob\n");elseprintf("Alice\n");}return 0;
}
这篇关于hdu 3032 Nim or not Nim? 博弈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!