StarRocks 存算分离成本优化最佳实践

2024-08-28 15:36

本文主要是介绍StarRocks 存算分离成本优化最佳实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

序言

StarRocks 存算分离借助对象存储来实现计算和存储能力分离,而存算分离版本 StarRocks 一般来说有以下三方面成本:

  1. 计算成本,也即机器使用成本,尤其是运行在公有云上时

  2. 存储成本,该部分与对象存储上存储的数据量相关

  3. API 访问成本,这部分与访问对象存储各种 API 的频率相关


优化数据导入模式

在存算分离中,我们推荐积攒更大批量的数据,使用低频大批量写入来代替高频微批写入,从而可以达到降低对象存储如 S3 的写入次数目的。同时,降低写入频次还可以降低后台数据版本 Compaction 的频率,进一步降低对象存储的写入次数,从而降低成本。

除此之外,对于某些导入模型,例如 Routine Load,我们还可以降低 Job 的并发 Task 数量来降低对象存储的写入频率,我们可以观察 BE 日志中每个 Task 的单次 KafKa 消费数据量,如果发现量较小,那我们就可以降低 并发 Task 数量来降低对象存储写入次数。

例如,下面的例子就展示了一个真实用户案例,该用户存在大量 Routine Load Job,优化之前每个 Job 的并发度为 3,导致每小时可产生约 15-20w 次 S3 PUT Object 调用请求。我们分析了它的 Job,发现每个 Task 单次只能从 Kafka 消费 数百行数据,于是我们果断调整了任务的并发数,从 3 降低为 1,通过监控我们也发现,每个 BE 节点上的 IOPS 有了明显的下降,如下图所示(约从 15:00 完成调整):

3d29e7f51415e7feab5a2603be5fa1c3.jpeg


优化分桶数

简单解释下分桶数过多对于成本的负面影响:

  1. 导入时,会将数据根据分桶键 Hash 写入所有 Tablet,每个 Tablet 都会产生 S3 的 PUT Object 调用。因此,分桶数越多,PUT Object 调用也就越多

  2. Compaction 也会产生写入,原理同上

  3. 查询时,如果使用独立的 Warehouse 服务查询,首次查询时都会访问 S3,而 Tablet 越多,产生的 S3 GET Object 请求也就相应地增加。

因此,我们也需要根据业务模式和成本来合理选择创建表时的分桶数,我们一般建议:

  1. 如果可以,尽量创建分区表

  2. 根据数据量来决定分桶数,原则上我们一般建议每 1-3GB 数据量对应一个 Tablet,当然,需要还要从业务性能层面再来测试下这种策略的分桶数是否满足性能需求


读取成本优化

云上对象存储一般也会对 GET Object 调用收费(读取带宽与读取次数),因此,我们也需要特别关注该方面的成本消耗,针对这方面,我们有以下建议:

  1. 开启 Cache,并根据业务访问模式尽量设置合适的 Cache 策略(如选择合适大小的 disk 以及 partition_duration 等参数)

  2. 在新版本(3.1.7 or 3.2.2 之后)中,开启 Block Cache,能带来更高的效率和更低的成本


存储成本优化

由于 StarRocks 使用了多版本存储机制,用户通过 show data 命令看到的表的大小与表实际在对象存储可能会有所差距,因此,我们建议用户应当特别关注在对象存储上实际占据的存储容量。

目前可能有以下几点原因会造成对象存储实际消耗超过用户 show data 看到的大小:

  1. 导入或者 Compaction 任务失败时产生了垃圾数据未清理(在后续版本包含垃圾数据自动清理能力),如果遇到该情况,可以使用社区提供的垃圾数据清理工具扫描并清理(慎重使用,避免误删数据)

  2. Compaction 或者 Vacuum 不及时造成了历史版本回收不及时,此时应该重点关注并优先解决 Compaction 跟不上的问题

无论如何,我们都建议用户在日常的巡检中特别关注对象存储实际的数据使用。

这篇关于StarRocks 存算分离成本优化最佳实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115169

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

MySQL 用户创建与授权最佳实践

《MySQL用户创建与授权最佳实践》在MySQL中,用户管理和权限控制是数据库安全的重要组成部分,下面详细介绍如何在MySQL中创建用户并授予适当的权限,感兴趣的朋友跟随小编一起看看吧... 目录mysql 用户创建与授权详解一、MySQL用户管理基础1. 用户账户组成2. 查看现有用户二、创建用户1. 基

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项