pytorch之BI-LSTM CRF(六)

2024-08-28 01:32
文章标签 pytorch lstm crf bi

本文主要是介绍pytorch之BI-LSTM CRF(六),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、计算CRF的条件概率

CRF计算条件概率 y 是标签序列, x输入的单词序列

2、分数计算由对数函数确定

3、Bi-LSTM CRF中分数的确定

在Bi-LSTM CRF中,定义了两种状态: emission 和 transition状态;i位置的emission状态来自Bi-LSTM在时间步的隐藏状态 i。转换分数存储在|T|x|T|矩阵 P,T是标签集;Pj,k是标签k过渡到标签j的分数

 

4、实例
 

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optimtorch.manual_seed(1)
def argmax(vec):'''返回最大下标'''_, idx = torch.max(vec, 1) #dim=1取行的最大值return idx.item()def prepare_sequence(seq, to_ix):'''获取句子的编号'''idxs = [to_ix[w] for w in seq] return torch.tensor(idxs, dtype=torch.long)def log_sum_exp(vec):'''计算log(sum(exp(vec-max_score)))'''max_score = vec[0, argmax(vec)]max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) #expand扩充tensor的第二维为vec.size()return max_score + \torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))class BiLSTM_CRF(nn.Module):def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):super(BiLSTM_CRF, self).__init__()self.embedding_dim = embedding_dimself.hidden_dim = hidden_dimself.vocab_size = vocab_sizeself.tag_to_ix = tag_to_ixself.tagset_size = len(tag_to_ix)self.word_embeds = nn.Embedding(vocab_size, embedding_dim)self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,num_layers=1, bidirectional=True)# 从LSTM到标签的概率self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)# 定义从标签i到标签j的转移矩阵self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))#start标签和stop标签都无转移或被转移,设为负无穷self.transitions.data[tag_to_ix[START_TAG], :] = -10000self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000self.hidden = self.init_hidden()def init_hidden(self):'''初始化隐层'''return (torch.randn(2, 1, self.hidden_dim // 2),torch.randn(2, 1, self.hidden_dim // 2))def _forward_alg(self, feats):#初始化前向传播分数init_alphas = torch.full((1, self.tagset_size), -10000.)init_alphas[0][self.tag_to_ix[START_TAG]] = 0.# Wrap到变量中,以便自动反向传播forward_var = init_alphas# 通过句子迭代for feat in feats:alphas_t = []  # t时刻的前向张量for next_tag in range(self.tagset_size):# 传播emission score;不考虑前一个标签,分数不变emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size)# 第i个实体的trans_score是从i过渡到next_tag的分数trans_score = self.transitions[next_tag].view(1, -1)# 第i个实体的next_tag_var是进行log-sum-exp之前的边的值(i-> next_tag)next_tag_var = forward_var + trans_score + emit_score# 此标签的前向变量是所有分数的log-sum-exp。alphas_t.append(log_sum_exp(next_tag_var).view(1))forward_var = torch.cat(alphas_t).view(1, -1)#print('_forward_alg forward_var:',feat,forward_var)terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]alpha = log_sum_exp(terminal_var)return alphadef _get_lstm_features(self, sentence):#获取lstm的参数self.hidden = self.init_hidden()embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)lstm_out, self.hidden = self.lstm(embeds, self.hidden)lstm_out = lstm_out.view(len(sentence), self.hidden_dim)lstm_feats = self.hidden2tag(lstm_out)return lstm_featsdef _score_sentence(self, feats, tags):#给出所提供标签序列的分数score = torch.zeros(1)tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])for i, feat in enumerate(feats):score = score + \self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]return scoredef _viterbi_decode(self, feats):backpointers = []# 在日志空间中初始化viterbi变量init_vvars = torch.full((1, self.tagset_size), -10000.)init_vvars[0][self.tag_to_ix[START_TAG]] = 0# forward_var在步骤i中保存步骤i-1的viterbi变量forward_var = init_vvarsfor feat in feats:bptrs_t = []  # 保留此步骤的反向指针viterbivars_t = []  # 持有此步骤的维特比变量for next_tag in range(self.tagset_size):# next_tag_var [i]在上一步中保存标签i的viterbi变量,以及从标签i过渡到next_tag的分数。# 我们不在此包括排放分数,因为最大值不取决于它们(我们在下面添加它们)next_tag_var = forward_var + self.transitions[next_tag]best_tag_id = argmax(next_tag_var)bptrs_t.append(best_tag_id)viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))#现在添加排放分数,并将forward_var分配给我们刚刚计算的维特比变量集forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)backpointers.append(bptrs_t)# Transition to STOP_TAGterminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]best_tag_id = argmax(terminal_var)path_score = terminal_var[0][best_tag_id]# Follow the back pointers to decode the best path.best_path = [best_tag_id]for bptrs_t in reversed(backpointers):best_tag_id = bptrs_t[best_tag_id]best_path.append(best_tag_id)# Pop off the start tag (we dont want to return that to the caller)start = best_path.pop()assert start == self.tag_to_ix[START_TAG]  # Sanity checkbest_path.reverse()return path_score, best_pathdef neg_log_likelihood(self, sentence, tags):feats = self._get_lstm_features(sentence)forward_score = self._forward_alg(feats)gold_score = self._score_sentence(feats, tags)return forward_score - gold_scoredef forward(self, sentence):  # dont confuse this with _forward_alg above.# Get the emission scores from the BiLSTMlstm_feats = self._get_lstm_features(sentence)print("lstm_feats:",lstm_feats.size())# Find the best path, given the features.score, tag_seq = self._viterbi_decode(lstm_feats)print("score:",score)print("best_path:",tag_seq)return score, tag_seqSTART_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 5
HIDDEN_DIM = 4# Make up some training data
training_data = [("the wall street journal reported today that apple corporation made money".split(),"B I I I O O O B I O O".split()
), ("georgia tech is a university in georgia".split(),"B I O O O O B".split()
)]word_to_ix = {}
for sentence, tags in training_data:for word in sentence:if word not in word_to_ix:word_to_ix[word] = len(word_to_ix)tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)# Check predictions before training
with torch.no_grad():precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)print("before training predict:",model(precheck_sent))# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(300):  # again, normally you would NOT do 300 epochs, it is toy datafor sentence, tags in training_data:# Step 1. Remember that Pytorch accumulates gradients.# We need to clear them out before each instancemodel.zero_grad()# Step 2. Get our inputs ready for the network, that is,# turn them into Tensors of word indices.sentence_in = prepare_sequence(sentence, word_to_ix)targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)# Step 3. Run our forward pass.loss = model.neg_log_likelihood(sentence_in, targets)# Step 4. Compute the loss, gradients, and update the parameters by# calling optimizer.step()loss.backward()optimizer.step()# Check predictions after training
with torch.no_grad():precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)print("after training predict:",model(precheck_sent))

 

 

参考网址:

https://zhuanlan.zhihu.com/p/29989121(原理篇;刘建平老师简单的线性CRF)

https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html#sphx-glr-beginner-nlp-advanced-tutorial-py (pytorch实战篇)

这篇关于pytorch之BI-LSTM CRF(六)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113350

相关文章

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

【超级干货】2天速成PyTorch深度学习入门教程,缓解研究生焦虑

3、cnn基础 卷积神经网络 输入层 —输入图片矩阵 输入层一般是 RGB 图像或单通道的灰度图像,图片像素值在[0,255],可以用矩阵表示图片 卷积层 —特征提取 人通过特征进行图像识别,根据左图直的笔画判断X,右图曲的笔画判断圆 卷积操作 激活层 —加强特征 池化层 —压缩数据 全连接层 —进行分类 输出层 —输出分类概率 4、基于LeNet

pytorch torch.nn.functional.one_hot函数介绍

torch.nn.functional.one_hot 是 PyTorch 中用于生成独热编码(one-hot encoding)张量的函数。独热编码是一种常用的编码方式,特别适用于分类任务或对离散的类别标签进行处理。该函数将整数张量的每个元素转换为一个独热向量。 函数签名 torch.nn.functional.one_hot(tensor, num_classes=-1) 参数 t

自然语言处理系列六十三》神经网络算法》LSTM长短期记忆神经网络算法

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十三神经网络算法》LSTM长短期记忆神经网络算法Seq2Seq端到端神经网络算法 总结 自然语言处理系列六十三 神经网络算法》LSTM长短期记忆神经网络算法 长短期记忆网络(LSTM,Long S

pytorch计算网络参数量和Flops

from torchsummary import summarysummary(net, input_size=(3, 256, 256), batch_size=-1) 输出的参数是除以一百万(/1000000)M, from fvcore.nn import FlopCountAnalysisinputs = torch.randn(1, 3, 256, 256).cuda()fl

Tensorflow lstm实现的小说撰写预测

最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。 1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y d

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)

🎯要点 🎯受激发射损耗显微镜算法模型:🖊恢复嘈杂二维和三维图像 | 🖊模型架构:恢复上下文信息和超分辨率图像 | 🖊使用嘈杂和高信噪比的图像训练模型 | 🖊准备半合成训练集 | 🖊优化沙邦尼尔损失和边缘损失 | 🖊使用峰值信噪比、归一化均方误差和多尺度结构相似性指数量化结果 | 🎯训练荧光显微镜模型和对抗网络图形转换模型 🍪语言内容分比 🍇Python图像归一化

Pytorch环境搭建时的各种问题

1 问题 1.一直soving environment,跳不出去。网络解决方案有:配置清华源,更新conda等,没起作用。2.下载完后,有3个要done的东西,最后那个exe开头的(可能吧),总是报错。网络解决方案有:用管理员权限打开prompt等,没起作用。3.有时候配置完源,安装包的时候显示什么https之类的东西,去c盘的用户那个文件夹里找到".condarc"文件把里面的网址都改成htt