大模型企业应用落地系列二》基于大模型的对话式推荐系统》核心技术架构设计图

本文主要是介绍大模型企业应用落地系列二》基于大模型的对话式推荐系统》核心技术架构设计图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】

文章目录

  • 大模型企业应用落地系列二
    • 基于大模型的对话式推荐系统》心技术架构设计图
      • 对话式推荐系统技术架构的每一层更加深入的分析解读具体实现
      • 大模型推荐技术发展趋势探讨
  • 总结

大模型企业应用落地系列二

基于大模型的对话式推荐系统》心技术架构设计图

上一篇文章详细介绍了基于大模型的对话式推荐系统概念及原理,下面即将为对话式推荐系统技术架构解开神秘的面纱。对话式传统推荐系统基于大模型AI Agenti智能体构建,大模型充作大脑做任务规划,推荐算法做Agent执行,技术架构设计图 如图8-1所示。
在这里插入图片描述
图8-1 基于大模型的对话式推荐系统技术架构

该对话式推荐系统架构主要包括大数据平台层、大模型底座层、大模型管理层、推荐引擎层、对话管理层和用户交互层。大数据平台层涵盖多种数据库和数据存储技术,为推荐系统提供数据支持;大模型底座层包括大模型底座和推荐微调大模型,为系统提供语言处理和个性化推荐能力;大模型管理层从多个方面进行管理和优化,提升系统的智能性和性能;推荐引擎层通过多种算法和服务,实现个性化、高效且实时的推荐;对话管理层负责处理用户与系统的互动,确保推荐流程的连贯性和个性化;用户交互层则直接与用户交互,提升用户体验。各层协同工作,共同构建起强大的对话式推荐系统。
以下是基于文章对对话式推荐系统架构的精华总结:

  1. 大数据平台层
    • 涉及多种数据库和数据存储技术,包括图数据库Neo4j、NoSQL数据库HBase、分布式计算平台Hadoop、搜索引擎Elasticsearch、数据湖Hudi、数据仓库Hive、分析型数据库Apache Doris、列式数据库ClickHouse、向量数据库Milvus和云托管向量数据库Pinecone。
    • 这些技术在对话式推荐系统中各司其职,共同构成高效、可靠的数据处理基础设施,为推荐系统提供数据支持。
  2. 大模型底座层
    • 包括大模型底座和推荐微调大模型。
    • 大模型底座为推荐系统提供强大的语言处理能力,理解和生成自然语言,支持多种任务。
    • 推荐微调大模型在大模型底座基础上通过领域内训练,更好地适应推荐任务,提高对用户查询的解析精度和相关推荐的准确性,提供个性化推荐。
    • 大模型融入对话式推荐系统后,各方面能力得到提升,包括对话管理、实时反馈与调整、增强用户交互体验、跨领域知识整合等。
  3. 大模型管理层
    • 从推荐AI智能体管理、RAG检索增强生成、训练微调推理管理、多模态融合、大模型数据管理、大模型评测六个方面搭建。
    • 推荐AI智能体管理协调和管理用户交互活动,确保推荐系统准确理解用户需求并提供高质量推荐服务。
    • RAG检索增强生成结合检索技术和生成模型,提升推荐的准确性和丰富度。
    • 训练微调推理管理涉及全参数微调、LoRA微调、训推一体化平台、推荐行为对齐和GPU资源分配等,优化推荐系统性能。
    • 多模态融合增强系统对复杂用户需求的理解和响应能力,包括文本、图片、视频数据的处理和多模态对齐、端到端训练。
    • 大模型数据管理确保数据质量、一致性和对模型训练优化的支持,包括数据清洗、标注、质量管理、元数据管理和可视化。
    • 大模型评测对推荐系统的性能、效果和用户体验进行综合评估,包括交互式评测、可解释性和透明度评估、多轮对话效果评估、个性化推荐评测和冷启动推荐能力评估。
  4. 推荐引擎层
    • 涵盖离线推荐算法、准实时推荐算法、在线Web推荐服务、推荐策略与建模、推荐算法效果评估和大模型与推荐系统融合等模块。
    • 离线推荐算法通过处理历史全量数据集生成初始推荐列表,包括深度因子分解机、协同过滤算法、Content - Based推荐、多策略融合算法和基于知识图谱的推荐等。
    • 准实时推荐算法处理实时数据流,提供准实时个性化推荐,包括用户行为数据流处理、准实时协同过滤、准实时推荐策略融合、实时特征计算更新和准实时推荐结果生成。
    • 在线Web推荐服务连接推荐系统与用户界面,提供实时、个性化和高性能推荐体验,包括实时用户偏好分析、智能实时精准排序、高并发缓存加速、在线推荐结果呈现和API网关访问授权。
    • 推荐策略与建模采用多维策略和技术,提升推荐精确度、个性化和互动性,包括推荐位组合策略、用户画像、多模态信息建模、强化学习用户建模和心理学用户建模。
    • 推荐算法效果评估涉及准确性、多样性、新颖性、排序质量等多个方面,通过AB测试平台等进行评估。
    • 大模型与推荐系统融合包括大模型特征提取与整合、大模型用户行为理解、多模态推荐生成、上下文感知推荐和双塔模型召回,提升推荐的精度、个性化和用户体验。
  5. 对话管理层
    • 包括对话状态跟踪、对话策略管理、意图识别、敏感词过滤、对话上下文管理和对话效果分析六个关键方面。
    • 负责处理和管理用户与系统之间的互动,确保推荐流程的连贯性和个性化。
  6. 用户交互层
    • 包括聊天界面、语音识别与合成、用户反馈收集、多平台适配、多模态媒体展示和个性化设置六个关键方面。
    • 是对话式推荐系统与用户直接交互的部分,设计得当能提升用户体验,使系统更用户友好、直观且个性化。

对话式推荐系统技术架构的每一层更加深入的分析解读具体实现

下一篇文章详细讲解技术架构的每一层,更加深入的分析解读具体实现,敬请关注。

大模型推荐技术发展趋势探讨

推荐系统的下一代发展趋势大概率走向基于大模型的互动式的对话式推荐,互动形式包括文本、语音、图像、视频等多模态融合。

更多的技术交流和探讨也欢迎加我个人微信chenjinglei66。

总结

此文章有对应的配套新书教材和视频:

【配套新书教材】
《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:本书从自然语言处理基础开始,逐步深入各种NLP热点前沿技术,使用了Java和Python两门语言精心编排了大量代码实例,契合公司实际工作场景技能,侧重实战。
全书共分为19章,详细讲解中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注、文本相似度算法、语义相似度计算、词频-逆文档频率(TF-IDF)、条件随机场、新词发现与短语提取、搜索引擎Solr Cloud和Elasticsearch、Word2vec词向量模型、文本分类、文本聚类、关键词提取和文本摘要、自然语言模型(Language Model)、分布式深度学习实战等内容,同时配套完整实战项目,例如对话机器人实战、搜索引擎项目实战、推荐算法系统实战。
本书理论联系实践,深入浅出,知识点全面,通过阅读本书,读者不仅可以理解自然语言处理的知识,还能通过实战项目案例更好地将理论融入实际工作中。

《分布式机器学习实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。

【配套视频】

推荐系统/智能问答/人脸识别实战 视频教程【陈敬雷】
视频特色:把目前互联网热门、前沿的项目实战汇聚一堂,通过真实的项目实战课程,让你快速成为算法总监、架构师、技术负责人!包含了推荐系统、智能问答、人脸识别等前沿的精品课程,下面分别介绍各个实战项目:
1、推荐算法系统实战
听完此课,可以实现一个完整的推荐系统!下面我们就从推荐系统的整体架构以及各个子系统的实现给大家深度解密来自一线大型互联网公司重量级的实战产品项目!
2、智能问答/对话机器人实战
由浅入深的给大家详细讲解对话机器人项目的原理以及代码实现、并在公司服务器上演示如何实际操作和部署的全过程!
3、人脸识别实战
从人脸识别原理、人脸识别应用场景、人脸检测与对齐、人脸识别比对、人脸年龄识别、人脸性别识别几个方向,从理论到源码实战、再到服务器操作给大家深度讲解!

自然语言处理NLP原理与实战 视频教程【陈敬雷】
视频特色:《自然语言处理NLP原理与实战》包含了互联网公司前沿的热门算法的核心原理,以及源码级别的应用操作实战,直接讲解自然语言处理的核心精髓部分,自然语言处理从业者或者转行自然语言处理者必听视频!

人工智能《分布式机器学习实战》 视频教程【陈敬雷】
视频特色:视频核心内容有互联网公司大数据和人工智能、大数据算法系统架构、大数据基础、Python编程、Java编程、Scala编程、Docker容器、Mahout分布式机器学习平台、Spark分布式机器学习平台、分布式深度学习框架和神经网络算法、自然语言处理算法、工业级完整系统实战(推荐算法系统实战、人脸识别实战、对话机器人实战)。

上一篇:大模型企业应用落地》基于大模型的对话式推荐系统完整介绍
下一篇:大模型企业应用落地系列三》基于大模型的对话式推荐系统》技术架构实现》大数据平台层

这篇关于大模型企业应用落地系列二》基于大模型的对话式推荐系统》核心技术架构设计图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112886

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设