Docker下使用llama.cpp部署带Function calling和Json Mode功能的Mistral 7B模型

本文主要是介绍Docker下使用llama.cpp部署带Function calling和Json Mode功能的Mistral 7B模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Docker下使用llama.cpp部署带Function calling和Json Mode功能的Mistral 7B模型

说明:

  • 首次发表日期:2024-08-27
  • 参考:
    • https://www.markhneedham.com/blog/2024/06/23/mistral-7b-function-calling-llama-cpp/
    • https://github.com/abetlen/llama-cpp-python?tab=readme-ov-file#function-calling
    • https://github.com/abetlen/llama-cpp-python/tree/main/docker#cuda_simple
    • https://docs.mistral.ai/capabilities/json_mode/
    • https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF
    • https://stackoverflow.com/questions/30905674/newer-versions-of-docker-have-cap-add-what-caps-can-be-added
    • https://man7.org/linux/man-pages/man7/capabilities.7.html
    • https://docs.docker.com/engine/containers/run/#runtime-privilege-and-linux-capabilities
    • https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
    • https://www.cnblogs.com/davis12/p/14453690.html

下载GGUF模型

使用HuggingFace的镜像 https://hf-mirror.com/

方式一:

pip install -U huggingface_hub
export HF_ENDPOINT=https://hf-mirror.comhuggingface-cli download --resume-download MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF --include *Q4_K_M.gguf

方式二(推荐):

sudo apt update
sudo apt install aria2 git-lfswget https://hf-mirror.com/hfd/hfd.shchmod a+x hfd.sh./hfd.sh MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF --include *Q4_K_M.gguf --tool aria2c -x 16 --local-dir MaziyarPanahi--Mistral-7B-Instruct-v0.3-GGUF

使用Docker部署服务

构建之前需要先安装NVIDIA Container Toolkit

安装NVIDIA Container Toolkit

准备:

curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

安装:

sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit

配置docker

sudo nvidia-ctk runtime configure --runtime=docker

NVIDIA Container Toolkit 安装的更多信息请参考官方文档: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html

构建镜像

使用官方的Dockerfile: https://github.com/abetlen/llama-cpp-python/blob/main/docker/cuda_simple/Dockerfile

ARG CUDA_IMAGE="12.2.0-devel-ubuntu22.04"
FROM nvidia/cuda:${CUDA_IMAGE}# We need to set the host to 0.0.0.0 to allow outside access
ENV HOST 0.0.0.0RUN apt-get update && apt-get upgrade -y \&& apt-get install -y git build-essential \python3 python3-pip gcc wget \ocl-icd-opencl-dev opencl-headers clinfo \libclblast-dev libopenblas-dev \&& mkdir -p /etc/OpenCL/vendors && echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icdCOPY . .# setting build related env vars
ENV CUDA_DOCKER_ARCH=all
ENV GGML_CUDA=1# Install depencencies
RUN python3 -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette pydantic-settings starlette-context# Install llama-cpp-python (build with cuda)
RUN CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python# Run the server
CMD python3 -m llama_cpp.server

因为我本地安装的CUDA版本为12.2,所以将base镜像改为nvidia/cuda:12.2.0-devel-ubuntu22.04

docker build -t llama_cpp_cuda_simple .

启动服务

docker run --gpus=all --cap-add SYS_RESOURCE -e USE_MLOCK=0 -e model=/models/downloaded/MaziyarPanahi--Mistral-7B-Instruct-v0.3-GGUF/Mistral-7B-Instruct-v0.3.Q4_K_M.gguf -e n_gpu_layers=-1 -e chat_format=chatml-function-calling -v /mnt/d/16-LLM-Cache/llama_cpp_gnuf:/models -p 8000:8000 -t llama_cpp_cuda_simple

其中:

  • -v 将本地文件夹映射到容器内部文件夹/models
  • --gpus=all 表示使用所有的GPU
  • --cap-add SYS_RESOURCE 表示容器将有SYS_RESOURCE的权限
  • 其中以-e开头的表示设置环境变量,实际上是设置llama_cpp.server的参数,相关代码详见 https://github.com/abetlen/llama-cpp-python/blob/259ee151da9a569f58f6d4979e97cfd5d5bc3ecd/llama_cpp/server/main.py#L79 和 https://github.com/abetlen/llama-cpp-python/blob/259ee151da9a569f58f6d4979e97cfd5d5bc3ecd/llama_cpp/server/settings.py#L17 这里设置的环境变量是大小写不敏感的,见 https://docs.pydantic.dev/latest/concepts/pydantic_settings/#case-sensitivity
    • -e model 指向模型文件
    • -e n_gpu_layers=-1 表示将所有神经网络层移到GPU
      • 假设模型一共有N层,其中n_gpu_layers层被放在GPU上,那么剩下的 N - n_gpu_layers 就会被放在CPU上
    • -e chat_format=chatml-function-calling 设置以支持Function Calling功能

启动完成后,在浏览器打开 http://localhost:8000/docs 查看API文档

调用测试

Function Calling

curl --location 'http://localhost:8000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-xxxxxxxxxxxxxxxxxxxxxx' \
--data '{"model": "gpt-3.5-turbo","messages": [{"role": "system","content": "You are a helpful assistant.\nYou can call functions with appropriate input when necessary"},{"role": "user","content": "What'\''s the weather like in Mauritius?"}],"tools": [{"type": "function","function": {"name": "get_current_weather","description": "Get the current weather in a given latitude and longitude","parameters": {"type": "object","properties": {"latitude": {"type": "number","description": "The latitude of a place"},"longitude": {"type": "number","description": "The longitude of a place"}},"required": ["latitude", "longitude"]}}}],"tool_choice": "auto"
}'

输出:

{"id": "chatcmpl-50c8e261-2b1a-4285-a6ee-e18a07ce92d9","object": "chat.completion","created": 1724757544,"model": "gpt-3.5-turbo","choices": [{"index": 0,"message": {"content": null,"tool_calls": [{"id": "call__0_get_current_weather_cmpl-97515c72-d214-4ed9-b183-7736199e5be1","type": "function","function": {"name": "get_current_weather","arguments": "{\"latitude\": -20.375, \"longitude\": 57.568} "}}],"role": "assistant","function_call": {"name": "","arguments": "{\"latitude\": -20.375, \"longitude\": 57.568} "}},"logprobs": null,"finish_reason": "tool_calls"}],"usage": {"prompt_tokens": 299,"completion_tokens": 25,"total_tokens": 324}
}

JSON Mode

curl --location "http://localhost:8000/v1/chat/completions" \--header 'Content-Type: application/json' \--header 'Accept: application/json' \--header "Authorization: Bearer sk-xxxxxxxxxxxxxxxxxxxxxx" \--data '{"model": "gpt-3.5-turbo","messages": [{"role": "user","content": "What is the best French cheese? Return the product and produce location in JSON format"}],"response_format": {"type": "json_object"}}'

输出:

{"id": "chatcmpl-bbfecfc5-2ea9-4052-93b2-08f1733e8219","object": "chat.completion","created": 1724757752,"model": "gpt-3.5-turbo","choices": [{"index": 0,"message": {"content": "{\n  \"product\": \"Roquefort\",\n  \"produce_location\": \"France, South of France\"\n}\n  \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t","role": "assistant"},"logprobs": null,"finish_reason": "stop"}],"usage": {"prompt_tokens": 44,"completion_tokens": 50,"total_tokens": 94}
}

使用以下代码将content部分写入到文本:

text = "{\n  \"product\": \"Roquefort\",\n  \"location\": \"France, South of France\"\n}\n \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"with open('resp.txt', 'w') as f:f.write(text)

可以看到内容:

{"product": "Roquefort","location": "France, South of France"
}

这篇关于Docker下使用llama.cpp部署带Function calling和Json Mode功能的Mistral 7B模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112825

相关文章

Java中的Cursor使用详解

《Java中的Cursor使用详解》本文介绍了Java中的Cursor接口及其在大数据集处理中的优势,包括逐行读取、分页处理、流控制、动态改变查询、并发控制和减少网络流量等,感兴趣的朋友一起看看吧... 最近看代码,有一段代码涉及到Cursor,感觉写法挺有意思的。注意是Cursor,而不是Consumer

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

MobaXterm远程登录工具功能与应用小结

《MobaXterm远程登录工具功能与应用小结》MobaXterm是一款功能强大的远程终端软件,主要支持SSH登录,拥有多种远程协议,实现跨平台访问,它包括多会话管理、本地命令行执行、图形化界面集成和... 目录1. 远程终端软件概述1.1 远程终端软件的定义与用途1.2 远程终端软件的关键特性2. 支持的

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安

springboot的调度服务与异步服务使用详解

《springboot的调度服务与异步服务使用详解》本文主要介绍了Java的ScheduledExecutorService接口和SpringBoot中如何使用调度线程池,包括核心参数、创建方式、自定... 目录1.调度服务1.1.JDK之ScheduledExecutorService1.2.spring