15 种高级 RAG 技术 ——从预检索到生成

2024-08-27 19:12

本文主要是介绍15 种高级 RAG 技术 ——从预检索到生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

15 种高级 RAG 技术 ——从预检索到生成

检索增强生成(RAG)是一个丰富、快速发展的领域,它为增强由大型语言模型(LLM)驱动的生成式人工智能系统创造了新的机会。在本指南中,WillowTree的数据与人工智能研究团队(DART)分享了15种先进的RAG技术,用于微调您自己的系统,在优化客户的应用程序时,我们信任所有这些技术。

原文链接:15 Advanced RAG Techniques | WillowTree (willowtreeapps.com)

image

内容整理

什么是检索增强生成RAG?

检索增强生成(RAG)是指对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大型语言模型(LLM)用海量数据进行训练,使用数十亿个参数为回答问题、翻译语言和完成句子等任务生成原始输出。在 LLM 本就强大的功能基础上,RAG 将其扩展为能访问特定领域或组织的内部知识库,所有这些都无需重新训练模型。这是一种经济高效地改进 LLM 输出的方法,让它在各种情境下都能保持相关性、准确性和实用性。

为什么检索增强生成很重要?

LLM 是一项关键的人工智能(AI)技术,为智能聊天机器人和其他自然语言处理(NLP)应用程序提供支持。目标是通过交叉引用权威知识来源,创建能够在各种环境中回答用户问题的机器人。不幸的是,LLM 技术的本质在 LLM 响应中引入了不可预测性。此外,LLM 训练数据是静态的,并引入了其所掌握知识的截止日期。

LLM 面临的已知挑战包括

  • 在没有答案的情况下提供虚假信息
  • 当用户需要特定的当前响应时,提供过时或通用的信息
  • 从非权威来源创建响应
  • 由于术语混淆,不同的培训来源使用相同的术语来谈论不同的事情,因此会产生不准确的响应

你可以将大型语言模型看作是一个过于热情的新员工,他拒绝随时了解时事,但总是会绝对自信地回答每一个问题。不幸的是,这种态度会对用户的信任产生负面影响,这是你不希望聊天机器人效仿的!

RAG 是解决其中一些挑战的一种方法。它会重定向 LLM,从权威的、预先确定的知识来源中检索相关信息。组织可以更好地控制生成的文本输出,并且用户可以深入了解 LLM 如何生成响应。

本文探讨了 15 种高级 RAG(检索增强生成)技术,旨在提升生成式 AI 系统的输出质量和整体性能稳健性。这些技术涵盖了从预检索到最终文本生成的各个阶段,为 AI 系统的精细化调整提供了丰富的选项

1. 预检索和数据索引技术

提高信息密度: 利用 LLM 对原始数据进行处理、清理和标记,剔除无关信息,提高信息密度,降低 LLM token 使用量和成本,并提升检索准确性。文中以使用 GPT-4 提取网页关键信息为例进行了说明,并强调了信息损失的风险和缓解策略。

应用分层索引检索 利用 LLM 生成文档摘要,创建多层检索系统,先通过摘要筛选相关文档,再进行更精细的检索,提高检索效率

利用假设问题索引****提升检索对称性: 使用 LLM 生成文档对应的假设问题和答案,并将问题作为检索单元,以解决查询与文档之间语义不对称的问题,提高检索准确性。

使用 LLM 对数据索引中的信息进行去重 通过聚类和 LLM 的信息提取能力,将数据索引中的信息去重,减少冗余,优化 LLM 的上下文窗口。

测试和优化分块策略 根据 embedding 模型、内容性质、查询复杂度、LLM 能力、数据量等因素,对分块策略进行 A/B 测试和优化,找到最佳分块大小和重叠率

2. 检索技术

利用 LLM 优化搜索查询 利用 LLM 的理解能力和对搜索引擎规则的掌握,将用户查询转化为更有效的搜索查询,提升检索效率和结果质量。文中分别给出了简单搜索查询和对话式 AI 系统查询优化的示例

利用假设文档嵌入****解决查询-文档不对称问题(HyDE): 利用 LLM 根据用户查询生成假设文档或文档片段,并将其用于语义搜索,解决查询-文档不对称问题,提高检索准确性

实施查询路由****或 RAG 决策器模式: 使用 LLM 将查询路由到适当的数据库,或判断是否需要进行 RAG 检索,以降低成本和提升效率

3. 检索后技术

使用重排序****优化搜索结果: 使用重排序模型优化搜索结果的优先级,将最相关的文档置于最前,提升 LLM 回答的准确性

使用上下文提示压缩****优化搜索结果: 利用 LLM 过滤、重新格式化或压缩检索到的信息,使之更适合 LLM 生成最终回复

使用纠正性 RAG 对检索到的文档进行评分和过滤: 使用训练好的模型对检索结果进行评估,过滤掉不正确或不相关的文档,提升 LLM 回答的准确性

4. 生成技术

优化提示和上下文窗口大小: 对生成提示进行优化,并通过实验确定最佳的上下文窗口大小,提升 LLM 回答的质量

使用思维链****提示消除噪声: 使用思维链提示引导 LLM 进行推理,增强其在存在噪声或无关上下文时的稳健性

使用 Self-RAG 使系统具备自我反思能力: 通过微调,使 LLM 能够在生成过程中输出特殊的反射标记(检索或批判标记),从而评估检索结果的相关性和生成结果的质量,并进行优化

通过微调忽略不相关上下文: 对 LLM 进行微调,使其能够忽略不相关的上下文,提升其在 RAG 任务中的性能

使用自然语言推理使 LLM 对不相关上下文更加稳健: 使用自然语言推理模型过滤掉不相关的上下文,提升 LLM 回答的准确性

其他考虑因素

输入和输出防护: 对 RAG 系统的输入和输出进行防护,防止出现越狱或恶意攻击,尤其是在金融服务和医疗保健等高监管行业

评估 RAG 系统: 建立可扩展的自动化评估方法,以监控 RAG 系统的性能,确保其质量和准确性

幻觉率: 关注 AI 幻觉问题,并采取措施进行检测、测量和缓解

其他潜在改进

  • 微调 embedding 模型
  • 使用知识图谱
  • 使用长上下文 LLM

总而言之,高级 RAG 技术为提升生成式 AI 系统的性能提供了丰富的工具和方法。通过合理地选择和应用这些技术,可以显著提高信息密度、检索准确性和用户回复质量。

这篇关于15 种高级 RAG 技术 ——从预检索到生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112533

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

C/C++随机数生成的五种方法

《C/C++随机数生成的五种方法》C++作为一种古老的编程语言,其随机数生成的方法已经经历了多次的变革,早期的C++版本使用的是rand()函数和RAND_MAX常量,这种方法虽然简单,但并不总是提供... 目录C/C++ 随机数生成方法1. 使用 rand() 和 srand()2. 使用 <random

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

kotlin中的行为组件及高级用法

《kotlin中的行为组件及高级用法》Jetpack中的四大行为组件:WorkManager、DataBinding、Coroutines和Lifecycle,分别解决了后台任务调度、数据驱动UI、异... 目录WorkManager工作原理最佳实践Data Binding工作原理进阶技巧Coroutine

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

nginx生成自签名SSL证书配置HTTPS的实现

《nginx生成自签名SSL证书配置HTTPS的实现》本文主要介绍在Nginx中生成自签名SSL证书并配置HTTPS,包括安装Nginx、创建证书、配置证书以及测试访问,具有一定的参考价值,感兴趣的可... 目录一、安装nginx二、创建证书三、配置证书并验证四、测试一、安装nginxnginx必须有"-

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch