【CSP】因子化简_(问题分析,过程拆解,方案构建)

2024-08-27 18:04

本文主要是介绍【CSP】因子化简_(问题分析,过程拆解,方案构建),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题背景与任务概述

在因子化简问题中,我们需要对给定的多个整数进行质因数分解,并根据题目要求的条件,计算出特定的因子并输出。这类问题在编程竞赛中十分常见,尤其是涉及大数处理时,如何高效地进行质因数分解并输出结果是一个关键点。

任务

  1. 对每个输入的整数 n 进行质因数分解。
  2. 根据质因数的分解结果,计算并输出满足条件的因子。

本文将通过详细的代码注释,逐步讲解如何实现这一任务,并分析其中的关键点和逻辑关系。

二、问题功能划分与分析

我们将问题拆分为以下几个子功能,并逐一进行实现和分析:

1. 快速输入输出模块

处理的问题

  • 由于输入可能非常大,且数据量较多,需要高效的输入输出方法。

方法选择

  • 使用 getchar() 等低级别输入输出函数,或者通过优化 C++ 的 cin/cout 来加快处理速度。

代码实现

inline int readInt() {int x = 0, f = 1;  // 初始化结果变量x和符号标志f,f初始为1表示正数char c = getchar(); // 读取一个字符,存入变量c中while (c < '0' || c > '9') {  // 判断字符是否为数字,如果不是数字,继续读取if (c == '-') f = -1;  // 如果字符是'-',将符号标志f设为-1,表示负数c = getchar(); // 继续读取下一个字符}while (c >= '0' && c <= '9') { // 如果字符是数字,继续读取并转换为整数x = x * 10 + c - '0'; // 更新x的值,将c的数值加入x中c = getchar(); // 读取下一个字符}return x * f; // 返回最终的整数结果,考虑符号
}inline long long readLong() {long long x = 0, f = 1; // 初始化结果变量x和符号标志f,f初始为1表示正数char c = getchar(); // 读取一个字符,存入变量c中while (c < '0' || c > '9') { // 判断字符是否为数字,如果不是数字,继续读取if (c == '-') f = -1;  // 如果字符是'-',将符号标志f设为-1,表示负数c = getchar(); // 继续读取下一个字符}while (c >= '0' && c <= '9') { // 如果字符是数字,继续读取并转换为整数x = x * 10 + c - '0'; // 更新x的值,将c的数值加入x中c = getchar(); // 读取下一个字符}return x * f; // 返回最终的长整型结果,考虑符号
}

优缺点

  • 优点:高效处理大量数据的输入输出,特别适合竞赛环境。
  • 缺点:与标准的 cin/cout 相比,代码可读性稍差。

2. 素数筛选与存储模块

处理的问题

  • 为了进行质因数分解,首先需要生成一个素数列表,这个列表包含所有小于等于 sqrt(n) 的素数。

方法选择

  • 使用筛法生成素数列表,保存到数组中供后续使用。

代码实现

long long PrimeList[10000]{2, 3};  // 存储素数的数组,初始值为2和3
int PrimeListSize = 2;  // 当前素数列表的大小,初始值为2void generatePrimes(long long n) {long long limit = sqrt(n) + 1;  // 计算n的平方根并加1,作为筛选素数的上限for (long long i = 5; i <= limit; i += 2) {  // 从5开始,遍历所有奇数,步长为2bool isPrime = true;  // 初始化当前数i为素数for (int j = 0; j < PrimeListSize && PrimeList[j] * PrimeList[j] <= i; ++j) {// 仅检查素数列表中的素数,如果i可以被当前素数整除,则i不是素数if (i % PrimeList[j] == 0) {isPrime = false;  // 标记i为非素数break;  // 退出内层循环,继续检查下一个数i}}if (isPrime) {  // 如果i是素数PrimeList[PrimeListSize++] = i;  // 将i加入素数列表,并更新列表大小}}
}

优缺点

  • 优点:可以有效地减少在质因数分解时的计算量。
  • 缺点:在处理非常大的数时,内存开销较大。

3. 质因数分解模块

处理的问题

  • 对每个输入的整数 n 进行质因数分解,找出所有质因数及其幂次。

方法选择

  • 利用预生成的素数列表进行试除,将 n 逐步分解为质因数。

代码实现

vector<pair<long long, int>> factorize(long long n) {vector<pair<long long, int>> factors;  // 存储质因数及其幂次的向量for (int i = 0; i < PrimeListSize && PrimeList[i] * PrimeList[i] <= n; ++i) {// 遍历素数列表中的素数,检查是否为n的因子if (n % PrimeList[i] == 0) {  // 如果当前素数是n的因子int count = 0;  // 初始化该因子的幂次while (n % PrimeList[i] == 0) {  // 继续除以当前素数,直到不能整除为止n /= PrimeList[i];  // 更新n的值count++;  // 增加该因子的幂次}factors.emplace_back(PrimeList[i], count);  // 将该质因数及其幂次存入向量}}if (n > 1) {  // 如果n本身是大于sqrt(n)的质数factors.emplace_back(n, 1);  // 将n本身作为质因数,幂次为1}return factors;  // 返回质因数及其幂次的向量
}

优缺点

  • 优点:通过试除法结合素数表,高效完成质因数分解。
  • 缺点:对于极大数值的处理可能需要优化内存管理。

4. 因子计算与输出模块

处理的问题

  • 根据质因数分解的结果,计算符合题目要求的因子并输出。

方法选择

  • 使用质因数分解的结果,通过累乘满足条件的质因数计算最终的结果。

代码实现

long long computeResult(vector<pair<long long, int>>& factors, int k) {long long result = 1;  // 初始化结果为1for (const auto& factor : factors) {  // 遍历所有质因数及其幂次if (factor.second >= k) {  // 如果当前质因数的幂次大于等于kresult *= pow(factor.first, factor.second);  // 将该质因数的幂次乘入结果}}return result;  // 返回最终计算结果
}

优缺点

  • 优点:逻辑清晰,代码易于理解。
  • 缺点:计算量大的情况下,可能会因为大数运算导致性能瓶颈。

三、整合后的总代码

#include <iostream>  // 包含输入输出流库,用于标准输入输出
#include <vector>    // 包含向量库,用于动态数组的实现
#include <cmath>     // 包含数学库,用于数学计算(如平方根)
#include <utility>   // 包含实用工具库,用于std::pair的使用using namespace std; // 使用标准命名空间,简化后续代码中的命名// 快速输入整数的函数,用于处理大量数据时提高输入速度
inline int readInt() {int x = 0, f = 1;  // 初始化结果变量x和符号标志f,f初始为1表示正数char c = getchar(); // 读取一个字符,存入变量c中while (c < '0' || c > '9') {  // 判断字符是否为数字,如果不是数字,继续读取if (c == '-') f = -1;  // 如果字符是'-',将符号标志f设为-1,表示负数c = getchar(); // 继续读取下一个字符}while (c >= '0' && c <= '9') { // 如果字符是数字,继续读取并转换为整数x = x * 10 + c - '0'; // 更新x的值,将c的数值加入x中c = getchar(); // 读取下一个字符}return x * f; // 返回最终的整数结果,考虑符号
}// 快速输入长整型数的函数
inline long long readLong() {long long x = 0, f = 1; // 初始化结果变量x和符号标志f,f初始为1表示正数char c = getchar(); // 读取一个字符,存入变量c中while (c < '0' || c > '9') { // 判断字符是否为数字,如果不是数字,继续读取if (c == '-') f = -1;  // 如果字符是'-',将符号标志f设为-1,表示负数c = getchar(); // 继续读取下一个字符}while (c >= '0' && c <= '9') { // 如果字符是数字,继续读取并转换为整数x = x * 10 + c - '0'; // 更新x的值,将c的数值加入x中c = getchar(); // 读取下一个字符}return x * f; // 返回最终的长整型结果,考虑符号
}// 存储素数的数组,初始值为2和3
long long PrimeList[10000]{2, 3};
int PrimeListSize = 2; // 当前素数列表的大小,初始值为2// 生成所有小于等于sqrt(n)的素数列表
void generatePrimes(long long n) {long long limit = sqrt(n) + 1; // 计算n的平方根并加1,作为筛选素数的上限for (long long i = 5; i <= limit; i += 2) { // 从5开始,遍历所有奇数,步长为2bool isPrime = true; // 初始化当前数i为素数for (int j = 0; j < PrimeListSize && PrimeList[j] * PrimeList[j] <= i; ++j) {// 仅检查素数列表中的素数,如果i可以被当前素数整除,则i不是素数if (i % PrimeList[j] == 0) {isPrime = false; // 标记i为非素数break; // 退出内层循环,继续检查下一个数i}}if (isPrime) { // 如果i是素数PrimeList[PrimeListSize++] = i; // 将i加入素数列表,并更新列表大小}}
}// 对给定的整数n进行质因数分解,返回质因数及其对应的幂次
vector<pair<long long, int>> factorize(long long n) {vector<pair<long long, int>> factors; // 存储质因数及其幂次的向量for (int i = 0; i < PrimeListSize && PrimeList[i] * PrimeList[i] <= n; ++i) {// 遍历素数列表中的素数,检查是否为n的因子if (n % PrimeList[i] == 0) { // 如果当前素数是n的因子int count = 0; // 初始化该因子的幂次while (n % PrimeList[i] == 0) { // 继续除以当前素数,直到不能整除为止n /= PrimeList[i]; // 更新n的值count++; // 增加该因子的幂次}factors.emplace_back(PrimeList[i], count); // 将该质因数及其幂次存入向量}}if (n > 1) { // 如果n本身是大于sqrt(n)的质数factors.emplace_back(n, 1); // 将n本身作为质因数,幂次为1}return factors; // 返回质因数及其幂次的向量
}// 根据质因数及其幂次,计算符合条件的因子
long long computeResult(vector<pair<long long, int>>& factors, int k) {long long result = 1; // 初始化结果为1for (const auto& factor : factors) { // 遍历所有质因数及其幂次if (factor.second >= k) { // 如果当前质因数的幂次大于等于kresult *= pow(factor.first, factor.second); // 将该质因数的幂次乘入结果}}return result; // 返回最终计算结果
}// 主函数,负责处理输入、计算结果并输出
int main() {int q = readInt(); // 读取询问次数qlong long maxNum = 0; // 初始化最大数vector<long long> nums(q); // 存储所有输入的数字vector<int> ks(q); // 存储与nums对应的k值for (int i = 0; i < q; ++i) { // 遍历每个询问nums[i] = readLong(); // 读取第i个数字ks[i] = readInt(); // 读取与第i个数字对应的k值maxNum = max(maxNum, nums[i]); // 更新最大数}generatePrimes(maxNum); // 根据最大数生成素数列表for (int i = 0; i < q; ++i) { // 遍历每个询问,进行计算vector<pair<long long, int>> factors = factorize(nums[i]); // 对第i个数字进行质因数分解long long result = computeResult(factors, ks[i]); // 根据质因数计算符合条件的因子cout << result << '\n'; // 输出结果}return 0; // 程序结束
}

四、变量关系与数据结构分析

变量关系

  • nums:保存所有输入的数字。
  • ks:保存与 nums 对应的 k 值,用于判断质因数幂次是否满足条件。
  • PrimeList:保存小于等于 sqrt(maxNum) 的所有素数,用于质因数分解。
  • factors:用于存储某个数字 n 的质因数及其幂次。

数据结构分析

  • PrimeList:选择数组存储素数,访问速度快,但可能在极端情况下导致空间浪费。
  • factors:使用 vector<pair<long long, int>> 来存储质因数及其幂次,结构清晰且便于操作。

优缺点

  • 优点:代码结构清晰,易于理解和维护,特别适合竞赛环境的高效运算。
  • 缺点:由于直接使用数组来存储素数,可能在处理极大范围的素数时造成空间浪费。

五、总结与思考

在处理因子化简问题时,通过合理的功能划分和高效的算法实现,可以在较短的时间内完成任务。本文通过优化输入输出、预处理素数表、使用合适的数据结构,使得代码在保证效率的同时也具有较好的可读性。面对不同规模的数据,可以考虑进一步优化内存使用或并行化计算,以适应更高的性能需求。这种结构设计不仅适合编程竞赛环境,也在实际工程中有很高的参考价值。

如果文章能够帮助到你,请给我一个肯定的赞

关注博主分享更多有用技术~

这篇关于【CSP】因子化简_(问题分析,过程拆解,方案构建)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112384

相关文章

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

springboot3.4和mybatis plus的版本问题的解决

《springboot3.4和mybatisplus的版本问题的解决》本文主要介绍了springboot3.4和mybatisplus的版本问题的解决,主要由于SpringBoot3.4与MyBat... 报错1:spring-boot-starter/3.4.0/spring-boot-starter-

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

解决java.lang.NullPointerException问题(空指针异常)

《解决java.lang.NullPointerException问题(空指针异常)》本文详细介绍了Java中的NullPointerException异常及其常见原因,包括对象引用为null、数组元... 目录Java.lang.NullPointerException(空指针异常)NullPointer

SpringBoot项目注入 traceId 追踪整个请求的日志链路(过程详解)

《SpringBoot项目注入traceId追踪整个请求的日志链路(过程详解)》本文介绍了如何在单体SpringBoot项目中通过手动实现过滤器或拦截器来注入traceId,以追踪整个请求的日志链... SpringBoot项目注入 traceId 来追踪整个请求的日志链路,有了 traceId, 我们在排

Android开发中gradle下载缓慢的问题级解决方法

《Android开发中gradle下载缓慢的问题级解决方法》本文介绍了解决Android开发中Gradle下载缓慢问题的几种方法,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、网络环境优化二、Gradle版本与配置优化三、其他优化措施针对android开发中Gradle下载缓慢的问