中文分词器性能比较

2024-08-27 11:32
文章标签 比较 性能 中文 分词器

本文主要是介绍中文分词器性能比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:

http://www.cnblogs.com/wgp13x/p/3748764.html

摘要:本篇是本人在Solr的基础上,配置了中文分词器,并对其进行的性能测试总结,具体包括

使用mmseg4j、IKAnalyzer、Ansj,分别从创建索引效果、创建索引性能、数据搜索效率等方面进行衡量。

 

具体的Solr使用方法假设读者已有了基础,关于Solr的性能指标见前期的Solr博文

前提:       Solr提供了一整套的数据检索方案,一台四核CPU、16G内存的机器,千兆网络。
需求:       1、对Solr创建索引的效率有一定的要求。

             2、中文分词速度要快,搜索速度也要快。

             3、中文分词准确率有一定的要求。

说明:      以下是在Solr上分别配置不同的中文分词器,它们之间的比较。


1.      中文分词

1.1  中文分词器概述

名称

最近更新

速度(网上情报)

扩展性支持、其它

mmseg4j

2013

complex 60W字/s (1200 KB/s)

simple 100W字/s (1900 KB/s)

使用sougou词库,也可自定义

(complex\simple\MaxWord)

IKAnalyzer

2012

IK2012 160W字/s (3000KB/s)

支持用户词典扩展定义、支持自定义停止词

(智能\细粒度)

Ansj

2014

BaseAnalysis 300W字/s

hlAnalysis 40W字/s

支持用户自定义词典,可以分析出词性,有新词发现功能

paoding

2008

100W字/s

支持不限制个数的用户自定义词库

 

注意:

中文分词器可能与最新版本Lucene不兼容,配置好运行时出现TokenStream contractviolation错误,对于mmseg4j需要更改com.chenlb.mmseg4j.analysis.MMSegTokenizer源码,添加super.reset()在reset()内,重新编译后替换原jar。

 

1.2  mmseg4j

创建索引效果:

FieldValue内容:

京華时报ぼおえ2009年1月23日报道,뭄내ㅠㅛㅜ치ㅗ受一股来自中西伯利亚的强冷空气影响,本市出现大风降温天气,白天最高气温只有零下7摄氏度celsius degree,同时伴有6到7级的偏北风。

在词库中补充:

京華、뭄내、ぼおえ、受一股来

 

类型

结果

textMaxWord

京華|时报|ぼ|お|え|2009|年|1|月|23|日|报道|뭄|내|ㅠ|ㅛ|ㅜ|치|ㅗ|受|一股|来|自|中|西|伯|利|亚|的|强|冷|空气|影响|本市|出现|大风|降温|天气|白天|最高|气温|只有|零下|7|摄氏|度|celsius|degree|同时|伴有|6|到|7|级|的|偏|北风

textComplex

京華|时报|ぼおえ|2009|年|1|月|23|日|报道|뭄내ㅠㅛ|ㅜ|치|ㅗ|受一股来|自|中|西伯利亚|的|强|冷空气|影响|本市|出现|大风|降温|天气|白天|最高气温|只有|零下|7|摄氏度|celsius|degree|同时|伴有|6|到|7|级|的|偏|北风

textSimple

京華|时报|ぼおえ|2009|年|1|月|23|日|报道|뭄내ㅠㅛ|ㅜ|치|ㅗ|受一股来|自|中西|伯|利|亚|的|强|冷空气|影响|本市|出现|大风|降温|天气|白天|最高气温|只有|零下|7|摄氏度|celsius|degree|同时|伴有|6|到|7|级|的|偏|北风

 

创建索引效率:

17个各种类型字段,在solr博文中字段基础上,选一空string类型字段改为新类型,并写入文本内容(原纯文本Size约为400B,SolrInputDocument对象Size约为1130B)。

文本内容以词库中任选20词拼成的句子,每词大约3字,一句大约60字。

总数据量为2000W条数据,与2.2节相同配置。

字段类型

创建时间(s)

索引大小(GB)

网络(MB/s)

速率(W条/s)

textMaxWord

3115

4.95

6.0

0.64 (38W字/s)

textComplex

4860

4.3

5.0

0.41 (25W字/s)

textSimple

3027

4.32

6.5

0.66 (40W字/s)

string

2350

9.08

8.0

0.85 (57W字/s)

 

速度:在与“solr博文http://www.cnblogs.com/wgp13x/p/3742653.html”中1.2节相同配置的情况下,分词索引创建速度要差于不使用分词的。

大小:分词索引大小要小于不使用分词的,经测试分词字段配置成autoGeneratePhraseQueries="false"对索引大小几乎没有影响。

 

数据搜索效率:

文本内容以词库中任选20词拼成的句子,每词大约3字,一句大约60字,总数据量为2000W条数据。

字段类型

关键词

搜索时间(ms)

结果(条)

textMaxWord

一不做二不休

180

2556

textComplex

一不做二不休

59

2648

textSimple

一不做二不休

62

2622

string

*一不做二不休*

20000

2689

textMaxWord

一个国家两种制度

22

2620

textComplex

一个国家两种制度

12

2687

textSimple

一个国家两种制度

10

2670

string

*一个国家两种制度*

15500

2657

textMaxWord

一些

24

15999

textComplex

一些

11

2687

textSimple

一些

9

2665

string

*一些*

14200

15758

textMaxWord

转辗反侧

15

2622

textComplex

转辗反侧

5

2632

textSimple

转辗反侧

9

2676

string

*转辗反侧*

15600

2665

 

补充:

对于非中文、数字、英文词汇,包括繁体字,在词典中加入新词汇即可。

mmseg4j对于“都是先从容易的做起”,不能把“容易”分出来,分词结果为“都是|先|从容|易|的|做起”。

网上推荐使用textMaxWord类型分词。

 

1.3  IKAnalyzer

创建索引效果:

FieldValue内容、在词库中补充均同1.2。

分词字段配置autoGeneratePhraseQueries="false"

 

类型

结果

细粒度

京華|时报|ぼおえ|2009|年|1|月|23|日报|日|报道|뭄내ㅠㅛ|ㅜ|치|ㅗ|受一股来|一股|一|股|来自|中西|西伯利亚|西伯|伯利|亚|的|强冷空气|冷空气|空气|影响|本市|出现|大风|降温|天气|白天|最高|高气|气温|只有|有|零下|零|下|7|摄氏度|摄氏|度|celsius|degree|同时|伴有|有|6|到|7|级|的|偏北风|偏北|北风

 

创建索引效率:

字段类型

创建时间(s)

索引大小(GB)

网络(MB/s)

速率(W条/s)

细粒度

3584

5.06

6.0

0.56 (33W字/s)

 

速度:与1.2比较,分词索引创建速度要略差于使用mmseg4j分词的。

大小:分词索引大小要略大于使用mmseg4j分词的。

 

数据搜索效率:

字段类型

关键词

搜索时间(ms)

结果(条)

细粒度

一不做二不休

400

5949255

细粒度

一个国家两种制度

500

6558449

细粒度

一些

300

5312103

细粒度

转辗反侧

15

10588

 

补充:

mmseg4j中textMaxWord,“一不做二不休”被分为:一|不做|二不|不休;

IKAnalyzer中细粒度,“一不做二不休”被分为:一不做二不休|一|不做|二不休|二|不休;

因此同样使用autoGeneratePhraseQueries="false",“一不做二不休”搜索,IKAnalyzer搜索出来的结果要远多于mmseg4j。

1.4  Ansj

创建索引效果:

FieldValue内容同1.2,没有补充词库。

 

<fieldType name="text_ansj"class="solr.TextField">

                            <analyzertype="index">

                                     <tokenizerclass="org.ansj.solr.AnsjTokenizerFactory" conf="ansj.conf"rmPunc="true"/>

                            </analyzer>

                            <analyzertype="query">

                                     <tokenizerclass="org.ansj.solr.AnsjTokenizerFactory" analysisType="1"rmPunc="true"/>

                            </analyzer>

</fieldType>

 

结果

京华|时报|ぼ|お|え|2009年|1月|23日|报道|,|뭄|내|ㅠ|ㅛ|ㅜ|치|ㅗ|受|一股|来自|中|西伯利亚|的|强|强冷空气|冷空气|影响|,|本市|出现|大风|降温|天气|,|白天|最高|气温|只|只有|有|零下|7摄氏度|摄氏|摄氏度|celsius||degree|,|同时|伴|伴有|有|6|到|7级|的|偏|偏北风|北风|。

 

    “京華”二字被分词后变成了“京华”,据朋友介绍,它有将生僻字改字的Bug。

 

创建索引效率:

字段类型

创建时间(s)

索引大小(GB)

网络(MB/s)

速率(W条/s)

细粒度

3815

5.76

5.2

0.52 (31W字/s)

 

速度:与1.2、1.3比较,分词索引创建速度要略差于使用mmseg4j、IKAnalyzer分词的。

大小:分词索引大小要略大于使用mmseg4j、IKAnalyzer分词的。

 

数据搜索效率:

关键词

搜索时间(ms)

结果(条)

一不做二不休

200

2478

一个国家两种制度

15

0

一些

25

15665

转辗反侧

6

2655

 

1.5  总结

按分词后的结果进行搜索,若在分词字段配置autoGeneratePhraseQueries="false",则是搜索条件先分词,再使用分词在结果中搜索,默认的是true。autoGeneratePhraseQueries="false"对创建索引速度没影响,对搜索结果有影响。也可以修改Solr的QueryPasser,对于输入的一个字符串,先进行相应分词,再使用分词结果在索引集中搜索。

精确或模糊*搜索,都是以词为单位搜索。精确搜索是指返回所有包含分词的结果。

分词器能对word、letter、digit等进行识别。

对于不使用分词的String类型进行搜索,只能通过模糊搜索*,搜到连字,以字为单位搜索。

在分词索引内搜索,速度较快;不分词,需要遍历所有文档,速度较慢。

如果需要分词的话,那分词速度是主要瓶颈。

综合考虑,mmseg4j是首选的中文分词器。

 

如有需要具体的测试代码,可以跟本人联系。


这篇关于中文分词器性能比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111541

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星