深入探索【Hadoop】生态系统:Hive、Pig、HBase及更多关键组件(下)

2024-08-27 10:52

本文主要是介绍深入探索【Hadoop】生态系统:Hive、Pig、HBase及更多关键组件(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🐇明明跟你说过:个人主页

🏅个人专栏:《大数据前沿:技术与应用并进》🏅

🔖行路有良友,便是天堂🔖

目录

一、引言

1、什么是Hadoop

2、Hadoop生态系统的构成概览

二、HBase:分布式NoSQL数据库

1、什么是HBase

2、HBase架构解析:Region、RegionServer、Zookeeper的角色

3、HBase API与操作方式

4、HBase应用场景

三、Hadoop生态系统中的其他重要组件

1、Sqoop:数据在Hadoop与传统数据库间的传输工具

2、Spark


一、引言

1、什么是Hadoop

Hadoop 是一个开源的分布式计算框架,用于处理大规模数据集。它由 Apache 软件基金会开发,主要包括以下两个核心组件:

  1. Hadoop 分布式文件系统 (HDFS):这是一个分布式文件系统,设计用于在集群中的多台机器上存储海量数据。它将数据分割成块,并将每个块复制到多个节点,以确保数据的可靠性和容错性。
  2. MapReduce:这是一个计算模型,用于并行处理大规模数据集。它将数据处理任务分解为两个主要阶段:Map 阶段(将输入数据转换为键值对)和 Reduce 阶段(将键值对合并为最终结果)。

Hadoop 还包括其他组件,如 Hadoop YARN(用于资源管理和调度)和 Hadoop Common(提供支持其他 Hadoop 模块的工具和库)。Hadoop 的设计允许它在廉价的硬件上运行,具有高容错性和扩展性,适合处理大规模的数据分析任务。

2、Hadoop生态系统的构成概览

1. 核心组件

  • Hadoop 分布式文件系统 (HDFS):负责分布式存储,提供高吞吐量的数据访问。
  • MapReduce:用于分布式数据处理,包含 Map 和 Reduce 两个阶段。
  • YARN (Yet Another Resource Negotiator):负责集群资源管理和任务调度。


2. 数据存储与管理

  • HBase:一个 NoSQL 分布式数据库,适用于处理大规模结构化和半结构化数据。
  • Hive:基于 SQL 的数据仓库工具,允许通过 SQL 查询大数据,并将查询转换为 MapReduce 任务。
  • Pig:一个高级数据流语言(Pig Latin),用于编写复杂的数据转换任务,最终由 MapReduce 处理。
  • Avro:一种数据序列化框架,用于存储和交换数据结构。
  • Parquet:列式存储格式,优化了 Hadoop 中的大规模数据分析。


3. 数据处理与分析

  • Spark:一个内存中数据处理框架,支持批处理、流处理和机器学习。
  • Flink:一个流式处理框架,适合低延迟的实时数据处理。
  • Tez:一个优化的执行引擎,用于替代 MapReduce,提供更快的数据处理。

 

二、HBase:分布式NoSQL数据库

1、什么是HBase

HBase 是一个基于 Hadoop 的分布式数据库,主要用于处理大规模结构化数据。它是一个列式存储的数据库,设计初衷是能够在大数据环境下快速读写和存储海量数据。

HBase 的关键特性:

  1. 分布式架构:HBase 基于 Hadoop HDFS 存储数据,利用分布式文件系统的优点来处理和存储非常大的数据集。
  2. 列式存储:HBase 的数据模型是一个多维的、稀疏的表结构,类似于 Google 的 Bigtable。数据按照行和列进行存储,但与传统的行式数据库不同,HBase 主要采用列族的方式进行数据存储和检索。
  3. 强一致性:HBase 提供强一致性的读写操作,这意味着对于某个数据点的所有读写操作,HBase 都保证一致的顺序。
  4. 线性可扩展性:HBase 能够在多台服务器上水平扩展,从而支持更大的数据量和更高的吞吐量。
  5. 随机访问和实时写入:HBase 支持快速的随机读写操作,非常适合用于需要频繁写入和读取的应用场景。

 

2、HBase架构解析:Region、RegionServer、Zookeeper的角色

1. Region

  • 定义:Region 是 HBase 中表数据的水平切分单位。每个 Region 存储表中一部分连续的行数据。最初,表中的所有数据都存储在一个 Region 中,当数据增长到一定阈值时,Region 会分裂为两个新的 Region,从而使得数据分布在多个 Region 上。
  • 作用:Region 的作用是将大表分割成多个小块,以便在不同的 RegionServer 上分布存储,从而提高系统的并发性和吞吐量。
  • Region 的生命周期:当表的数据量增加时,Region 会自动分裂并重新分配到不同的 RegionServer 上。每个 Region 都有一个唯一的范围(start key 和 end key),用于确定它负责的那部分数据。

 

2. RegionServer

  • 定义:RegionServer 是 HBase 中负责管理 Region 的节点。每个 RegionServer 可以管理多个 Region,处理这些 Region 的读写请求,并与 HDFS 进行数据存储交互。
  • 主要职责:
    • 存储和管理 Region:RegionServer 负责启动和停止它所管理的 Region,并处理来自客户端的读写请求。
    • 处理读写请求:当客户端请求读写数据时,RegionServer 会将请求路由到正确的 Region 并执行操作。
    • 数据持久化:数据首先写入到内存中(MemStore),随后会周期性地刷新到磁盘(HDFS 中的 HFile),从而保证数据持久化。
    • 数据压缩和合并:为了优化存储和提高访问速度,RegionServer 负责对 HFile 进行压缩和合并操作。 

3. Zookeeper

  • 定义:Zookeeper 是一个分布式协调服务,在 HBase 中用于集群管理和协调。它不是 HBase 的专用组件,但在 HBase 集群中起着关键作用。
  • 主要职责:
    • 元数据管理:Zookeeper 负责存储和管理 HBase 的元数据,包括表的 Schema 信息、Region 的位置信息等。
    • RegionServer 的协调:Zookeeper 监控 RegionServer 的状态,并负责处理 RegionServer 的启动、关闭以及故障恢复等任务。如果某个 RegionServer 失效,Zookeeper 会通知 HBase Master,Master 会重新分配失效的 Region 到其他 RegionServer。
    • Master 选举:在 HBase 中,Master 节点是集群的管理节点。Zookeeper 负责管理 Master 的选举过程,以确保集群中始终有一个活跃的 Master 节点。

 

  • Region 是 HBase 数据存储的基本单元,通过水平切分来管理大规模数据。
  • RegionServer 是 HBase 集群中的工作节点,负责管理 Region 并处理客户端的读写请求。
  • Zookeeper 则负责集群的协调和管理,确保 RegionServer 和 Master 的稳定运行。

3、HBase API与操作方式

连接到 HBase
 

import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;Configuration config = HBaseConfiguration.create();
Connection connection = ConnectionFactory.createConnection(config);


创建表
 

import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.ColumnFamilyDescriptorBuilder;
import org.apache.hadoop.hbase.client.TableDescriptorBuilder;Admin admin = connection.getAdmin();
TableName tableName = TableName.valueOf("my_table");if (!admin.tableExists(tableName)) {TableDescriptorBuilder tableDescriptorBuilder = TableDescriptorBuilder.newBuilder(tableName);tableDescriptorBuilder.setColumnFamily(ColumnFamilyDescriptorBuilder.newBuilder("my_cf".getBytes()).build());admin.createTable(tableDescriptorBuilder.build());
}


插入数据
 

import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;Table table = connection.getTable(TableName.valueOf("my_table"));
Put put = new Put(Bytes.toBytes("row1"));
put.addColumn(Bytes.toBytes("my_cf"), Bytes.toBytes("column1"), Bytes.toBytes("value1"));
table.put(put);


读取数据
 

import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.Result;Get get = new Get(Bytes.toBytes("row1"));
Result result = table.get(get);
byte[] value = result.getValue(Bytes.toBytes("my_cf"), Bytes.toBytes("column1"));
System.out.println("Value: " + Bytes.toString(value));

4、HBase应用场景

HBase 是一种强大的分布式数据库系统,适用于处理海量数据的场景。

1. 时间序列数据存储

HBase 非常适合存储和管理时间序列数据,如传感器数据、日志数据、股票交易记录等。这些数据往往具有高频率写入的特点,同时要求能够快速地按时间顺序检索。

应用示例:

  • 物联网(IoT)设备数据存储:收集和存储来自数百万传感器的时间序列数据,并对其进行实时分析。
  • 金融交易系统:记录股票交易活动,并提供对历史数据的快速访问。


2. 日志数据分析

HBase 能够处理海量的日志数据,并支持高效的实时分析。其分布式架构可以水平扩展,处理来自多个来源的日志数据。

应用示例:

  • 网络流量分析:实时存储和分析网络流量日志,以检测异常或入侵行为。
  • 系统运维监控:收集和分析系统日志,帮助运维人员快速定位和解决问题。


3. 大数据平台的后台存储

HBase 常被用作大数据平台的后台存储,用于支持复杂的数据分析和处理任务。

应用示例:

  • Hadoop 集成:HBase 与 Hadoop 无缝集成,作为 MapReduce 作业的后台存储,以便于处理大规模数据集。
  • 数据湖存储:在数据湖架构中,HBase 可作为存储层,用于管理和处理大量的非结构化或半结构化数据。

 

三、Hadoop生态系统中的其他重要组件

1、Sqoop:数据在Hadoop与传统数据库间的传输工具

Sqoop 是 Apache Hadoop 生态系统中的一个工具,用于在 Hadoop 和传统关系型数据库之间高效地传输数据。Sqoop 的全称是 "SQL to Hadoop"。

Sqoop 的主要功能

1. 从关系数据库导入数据到 Hadoop:

  • 导入到 HDFS:将关系型数据库中的数据表导入到 Hadoop 分布式文件系统(HDFS)中。导入的数据可以存储为文本文件、SequenceFile 文件或者 Avro 文件。
  • 导入到 Hive:直接将数据导入到 Hive 表中,方便进行后续的查询和分析。
  • 导入到 HBase:将数据导入到 HBase 表中,以利用 HBase 的高效随机读写特性。


从 Hadoop 导出数据到关系数据库:

  • 从 HDFS 导出数据到数据库:Sqoop 支持将存储在 HDFS 上的数据导出到关系型数据库中。
  • 从 Hive 导出数据:可以将 Hive 表中的数据导出到关系型数据库中。


Sqoop 的工作原理

Sqoop 的核心是基于 JDBC(Java Database Connectivity)与数据库进行通信的。它通过将数据库中的表划分成多个分片(slice),并使用 MapReduce 任务并行处理这些分片,实现高效的数据传输。Sqoop 会自动生成相关的 MapReduce 代码来执行数据的导入或导出。

2、Spark

Apache Spark 是 Hadoop 生态系统中的一个重要组件,它是一个快速、通用的大数据处理引擎,专为大规模数据处理和分析设计。Spark 提供了比传统 Hadoop MapReduce 更快的计算速度和更简单的编程模型,是当前大数据处理领域的核心技术之一。

Spark 的关键特性

1. 高速计算:

  • 内存计算:Spark 通过在内存中存储中间计算结果,大幅减少磁盘 I/O,从而加快处理速度。对于迭代计算和交互式数据处理,这一特性尤为重要。
  • DAG(有向无环图)执行引擎:Spark 使用 DAG 代替 MapReduce 的两阶段执行模型,使得计算任务的调度和优化更加高效。


2. 简化编程模型:

  • 高级 API:Spark 提供了丰富的高级 API,包括 Java、Scala、Python 和 R,简化了大数据处理的开发。Spark 的核心抽象——RDD(弹性分布式数据集),使得数据并行计算变得简单直观。
  • 支持多种数据操作:包括过滤、映射、分组、聚合、连接等,开发者可以轻松编写复杂的数据处理逻辑。

💕💕💕每一次的分享都是一次成长的旅程,感谢您的陪伴和关注。希望这些关于大数据的文章能陪伴您走过技术的一段旅程,共同见证成长和进步!😺😺😺

🧨🧨🧨让我们一起在技术的海洋中探索前行,共同书写美好的未来!!!  

 

这篇关于深入探索【Hadoop】生态系统:Hive、Pig、HBase及更多关键组件(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111466

相关文章

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入手撕链表

链表 分类概念单链表增尾插头插插入 删尾删头删删除 查完整实现带头不带头 双向链表初始化增尾插头插插入 删查完整代码 数组 分类 #mermaid-svg-qKD178fTiiaYeKjl {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-