《机器学习》 决策树 ID3算法

2024-08-27 08:52

本文主要是介绍《机器学习》 决策树 ID3算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、什么是决策树?

1、概念

2、优缺点

3、核心

4、需要考虑的问题

二、决策树分类标准,ID3算法

1、什么是ID3 算法

2、ID3算法怎么用

1)熵值计算公式

2)用法实例

三、实操 ID3算法

1)求出play标签的熵值

2)分别计算天气、温度、湿度、风、play的信息增益

• 求outlook 总熵值及信息增益

• 求temperature 总熵值及信息增益

• 求humidity总熵值及信息增益

• 求windy总熵值及信息增益

当前可以绘画出决策树根节点部分:

3)此时需要对sunny对应的块进行当做一个表来计算其内数值的熵:

• play标签的熵

• 求temperature 总熵值及信息增益

• 求humidity总熵值及信息增益

• 求windy总熵值及信息增益

4)此时需要对rainy对应的块进行当做一个表来计算其内数值的熵:

• play标签的熵

• 求temperature 总熵值及信息增益

• 求humidity总熵值及信息增益

• 求windy总熵值及信息增益


一、什么是决策树?

1、概念

        决策树是机器学习中一种常见的分类和回归算法。它基于树状结构的模型,通过对数据进行逐步划分,最终生成一棵决策树来进行预测或分类任务。

        在决策树中,每个节点代表一个特征或属性,每个分支代表该特征的不同取值,而每个叶节点代表一个类别或者一个预测结果。

        决策树的构建过程通过选择最优的特征和划分点来进行。这个选择过程通常基于一些衡量指标,比如信息增益、基尼指数等,来选择最能区分不同类别的特征进行划分。递归地对数据集进行划分,直到满足某个停止条件,例如达到最大深度、样本数量不足等。这样就生成了一棵完整的决策树模型。

2、优缺点

        易于理解和解释,能够处理离散和连续型特征,对缺失值和异常值具有鲁棒性,同时可以处理多分类问题。

        容易过拟合训练数据,对噪声敏感,不适合处理高维稀疏数据。针对这些问题,可以采用剪枝、集成学习等方法进行改进。

3、核心

        所有数据从根节点一步一步落到叶子结点

        例如下图,房产是根节点,下面的车辆、年收入是非叶子节点,那么其结果可以贷款和不可贷款就是叶子结点

4、需要考虑的问题

1)哪个节点作为根节点?哪些节点作为中间节点?哪些节点作为叶子结点?

2)节点如何分裂?

3)节点分裂标准的依据是什么?

二、决策树分类标准,ID3算法

1、什么是ID3 算法

        衡量标准:熵值,熵值表示随机变量不确定性的度量,或者说是物体内部的混乱程度。

        用于根据给定的训练数据集构建决策树模型,其基本思想是在每个节点上选择最佳的属性来进行划分,以使得划分后的子节点中的样本尽可能属于同一类别。

        ID3算法通过计算每个属性的信息增益来度量属性选择的好坏。信息增益反映了在已知某个属性的取值的条件下,对类别的不确定性减少了多少。在每个节点上选择信息增益最大的属性作为划分依据,递归地构建决策树。

        其缺点是仅适用于处理离散型属性,不适用于处理连续型属性。此外,ID3算法在处理缺失数据时也存在问题。

2、ID3算法怎么用

1)熵值计算公式

2)用法实例

        集合A:[1,1,1,1,1,1,1,1,2,2],共10项

        集合B:[0,1,2,3,4,5,6,7,8,9],同样10项

        A的熵值为:1的概率乘上其log,2的概率乘上其log,然后再求和即可得到熵值

        即:-8/10 * log(8/10)-(2/10)log(2/10)=0.722

        同理:B的熵值为:(-1/10 log(1/10))*10=3.322

所以:B的熵值更大,其数据更混乱

三、实操 ID3算法

有如下数据图表,画出其决策树

1)求出play标签的熵值

result = -5/14log(5/14)- 9/14log(9/14)= 0.94

2)分别计算天气、温度、湿度、风、play的信息增益

        信息增益 = 标签的熵 - 总熵值

        总熵值 = 每列的不同种类熵值的比例求和

• 求outlook 总熵值及信息增益

sunny熵值 = -3/5log(3/5) - 2/5log(2/5) =0.97

overcast熵值 = -4/4log(4/4) = 0

rainy熵值 = -3/5log(3/5) - 2/5log(2/5) =0.97

outlook 总熵值 = 5/14 * sunny熵值 + 4/14 * overcast熵值 + 5/14 * rainy熵值 = 0.6929

信息增益 = 标签熵值 - 总熵值 = 0.2471

• 求temperature 总熵值及信息增益

hot熵值 = -2/4log(2/4)-2/4log(2/4)= 1.0

mild熵值 = -4/6log(4/6) -2/6log(2/6)= 0.92

cool熵值 = -1/4log(1/4) -3/4log(3/4)= 0.81

temperature总熵值 = 4/14 * 1.0 + 6/14 * 0.92 + 4/14 * 1.0 = 0.91

信息增益 = 0.94 - 0.91 = 0.03

• 求humidity总熵值及信息增益

high熵值 = -4/7log(4/7)- 3/7log(3/7)= 0.985

normal熵值 = -6/7log(6/7) - 1/7log(1/7) = 0.592

humidity总熵值 = 7/14*0.985 + 7/14*0.597 = 0.788

信息增益 = 0.94 - 0.788 = 0.152

• 求windy总熵值及信息增益

FALSE熵值 = -6/8log(6/8) - 2/8log(2/8) = 0.81

TRUE熵值 = -1/2log(1/2) - 1/2log(1/2)= 1.0

windy总熵值 = 8/14 *0.81 + 6/14*1.0 = 0.89

信息增益 = 0.94 - 0.89 = 0.05

由上述可得:

        outlook信息增益为:0.2471

        temperature信息增益为:0.03

        humidity信息增益为: 0.152

        windy信息增益为:0.05

        所以可知,outlook的信息增益最大,信息增益越大表示在划分属性上获得更多的信息,即在已知某个属性的取值的条件下,类别的不确定性减少了更多。因此,信息增益越大,说明选择该属性作为划分依据能够更好地区分不同类别的样本,所以将其当做根节点。

当前可以绘画出决策树根节点部分:

3)此时需要对sunny对应的块进行当做一个表来计算其内数值的熵:

• play标签的熵

        result = -3/5log(3/5) -2/5log(2/5)= 0.97

• 求temperature 总熵值及信息增益

        hot熵值 = -2/2log(2/2)= 0

        mild熵值 = -1/2log(1/2) -1/2log(1/2)= 1.0

        cool熵值 = -1 log 1 = 0

        总熵值 = 1/5 * 1 = 0.2

        信息增益 = 0.97 - 0.2 =0.77

• 求humidity总熵值及信息增益

        high熵值 = -1 log 1 = 0

        normal熵值 = -1 log 1 = 0

        总熵值 = 0

        信息增益 = 0.97 - 0 = 0.97

• 求windy总熵值及信息增益

        False熵值 = -1/3log(1/3)-2/3log(2/3)= 0.918

        TRUE熵值 = -1/2log(1/2) -1/2log(1/2)= 1.0

        总熵值 = 3/5 * 0.918 + 2/5 * 1 = 0.9508

        信息增益 = 0.97 - 0.9508 = 0.0192

        由上述可得最大信息增益为湿度humidity,所以可得出上述决策树图sunny对应的非叶子节点为湿度

此时可发现湿度为high是,标签为no,湿度为normal时,标签为yes,如下图所示:

4)此时需要对rainy对应的块进行当做一个表来计算其内数值的熵:

• play标签的熵

        result = -3/5log(3/5) -2/5log(2/5)= 0.97

• 求temperature 总熵值及信息增益

        mild熵值 = -1/3log(1/3)-2/3log(2/3)= 0.918

        cool熵值 =  -1/2log(1/2) -1/2log(1/2)= 1.0

        总熵值 = 0.918 * 3/5 + 1 * 2/5 = 0.9508

        信息增益 = 0.97 - 0.9508 = 0.0192

• 求humidity总熵值及信息增益

        high熵值 = -1/2log(1/2) -1/2log(1/2)= 1.0

        normal熵值 =  -1/3log(1/3)-2/3log(2/3)= 0.918

        总熵值 = 1 * 2/5 + 0.918 * 3/5 = 0.9508

        信息增益 = 0.97 - 0.9508 = 0.0192

• 求windy总熵值及信息增益

        False熵值 = 0

        TRUE熵值 = 0

        总熵值 = 0

        信息增益 = 0.97 

所以可得出上述rainy对应非叶子结点的项为windy

然后再观察可得到风为FALSE时标签为yes,风为TRUE时,标签为no

所以得出完整决策树图片:

这篇关于《机器学习》 决策树 ID3算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111209

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用