深度学习实用方法 - 默认的基准模型篇

2024-08-27 08:44

本文主要是介绍深度学习实用方法 - 默认的基准模型篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

序言

在深度学习的广阔领域中,选择合适的基准模型是项目成功的关键一步。深度学习模型的选择不仅取决于问题的复杂性,还深受数据结构、任务类型及领域特性的影响。从简单的统计模型如逻辑回归到复杂的深度学习架构,每一步选择都需精心考量。本文将简要概述深度学习中默认的基准模型,旨在为读者提供一个清晰的起点,以便在面对不同问题时能够迅速定位并选用最合适的模型。

默认的基准模型

  • 确定性能度量和目标后,任何实际应用的下一步是尽快建立一个合理的端到端的系统。
  • 本篇给出了一些建议,在不同情况下使用哪种算法作为第一个基准方法。我们提供了关于不同情况下使用哪种算法作为第一基准方法的建议。值得注意的是,深度学习研究进展迅速,所以本书出版后很快可能会有更好的默认算法。
  • 根据问题的复杂性,项目开始时可能无需使用深度学习。如果可以只需正确选择几个线性权重来解决问题,那么项目可以开始于一个简单的统计模型,如逻辑回归。
  • 如果问题属于 “ AI \text{AI} AI-完成’’ 类的,如对象识别,语音识别,机器翻译,等等,那么项目开始于一个合适的深度学习模型,效果会比较好。
  • 首先,根据数据的结构选择一类合适的模型。
    • 如果项目是以固定大小的向量作为输入的监督学习,那么可以使用全连接的前馈网络。
    • 如果输入有已知的拓扑结构(例如,输入是图像),那么可以使用卷积网络。
    • 在这些情况下,刚开始可以使用某种逐点线性单元( ReLU \text{ReLU} ReLU或者其扩展,如 Leaky ReLU \text{Leaky ReLU} Leaky ReLU PReLU \text{PReLU} PReLU maxout \text{maxout} maxout)。
    • 如果输入或输出是一个序列,可以使用门控循环网络( LSTM \text{LSTM} LSTM GRU \text{GRU} GRU)。
  • 具有衰减学习率动量的 SGD \text{SGD} SGD是一个合理的优化算法选择(流行的衰减方法有,衰减到固定最低学习率的线性衰减,指数衰减,或每次发生验证错误高原时降低学习率 2 − 10 2 − 10 210 倍,这些衰减方法在不同问题上好坏不一)。另一个非常合理的选择是 Adam \text{Adam} Adam算法。 batch normalization \text{batch normalization} batch normalization对优化性能有着显著的影响,特别是对卷积网络和具有 sigmoid \text{sigmoid} sigmoid非线性函数的网络而言。虽然在最初的基准中忽略 batch normalization \text{batch normalization} batch normalization是合理的,然而当优化似乎出现问题时,应该立刻使用 batch normalization \text{batch normalization} batch normalization
  • 除非训练集包含数千万以上的样本,否则项目应该在一开始就包含一些简单的正则化。 提前终止也应该普遍采用。 Dropout \text{Dropout} Dropout也是一个很容易实现,且兼容很多模型和训练算法的良好正则化项。 batch normalization \text{batch normalization} batch normalization有时也能降低泛化误差,并且因为标准化每个变量的统计估计而带来的噪扰,可以省略 Dropout \text{Dropout} Dropout
  • 如果我们的任务和另一个被广泛研究的任务很相似,那么通过复制先前研究中已知性能良好的模型和算法,可能会得到很好的效果。甚至可以从该任务中复制一个训练好的模型。例如,通常会使用 ImageNet \text{ImageNet} ImageNet 上训练好的卷积网络的特征来解决其他计算机视觉问题 ( Girshick et al., 2015 \text{Girshick et al., 2015} Girshick et al., 2015)。
  • 一个常见问题是项目开始时是否使用无监督学习,我们将在后续篇章进一步探讨这个问题。
    • 这个问题和特定领域有关。在某些领域,比如自然语言处理,能够在很大程度上受益于无监督学习技术,如学习无监督词嵌入。
    • 在其他领域,如计算机视觉,除非是在半监督的设定下(有标签的样本数量很少) ( Kingma et al., 2014; Rasmus et al., 2015 \text{Kingma et al., 2014; Rasmus et al., 2015} Kingma et al., 2014; Rasmus et al., 2015),目前无监督学习并没有带来益处。
    • 如果应用所在环境中,无监督学习被认为是很重要的,那么将其包含在第一个端到端的基准中。否则,只有在解决无监督问题时,才第一次尝试就使用无监督学习。我们总能在之后发现初始基准过拟合的时候,加入无监督学习。

基准模型的定义

基准模型( Benchmark Model \text{Benchmark Model} Benchmark Model)通常是指在某一特定任务或数据集上表现良好,并被广泛接受作为性能评估标准的模型。它可以是简单的统计模型,如逻辑回归,也可以是复杂的深度学习模型,如卷积神经网络( CNN \text{CNN} CNN)或循环神经网络( RNN \text{RNN} RNN)。

选择默认基准模型的原则

  • 问题复杂性:
    • 对于简单问题,如线性可分的数据集,可以选择线性回归或逻辑回归等简单统计模型作为基准。
    • 对于复杂问题,如图像识别、语音识别等,通常需要选择深度学习模型作为基准,因为它们能够捕获数据中的复杂模式。
  • 数据结构:
    • 如果输入数据是固定大小的向量,可以选择全连接的前馈网络。
    • 如果输入数据具有已知的拓扑结构(如图像),则卷积网络( CNN \text{CNN} CNN)是更好的选择。
    • 对于序列数据(如文本或时间序列),可以选择循环神经网络( RNN \text{RNN} RNN)或其变种(如 LSTM \text{LSTM} LSTM GRU \text{GRU} GRU)。
  • 性能要求:
    • 在追求高精度时,可能需要选择更复杂、参数更多的模型。
    • 在资源受限的情况下(如计算资源有限、实时性要求高),则需要选择更轻量级的模型。
  • 先前研究:
    • 如果当前任务与先前研究中的任务相似,可以复制先前研究中已知性能良好的模型和算法作为基准。
    • 通过迁移学习,可以使用在相关任务上预训练的模型作为起点,进一步调整以适应当前任务。

常见的默认基准模型

  • 图像识别:
    • 在图像识别领域,常见的默认基准模型包括 AlexNet \text{AlexNet} AlexNet VGG \text{VGG} VGG ResNet \text{ResNet} ResNet等卷积神经网络。
  • 语音识别:
    • 在语音识别领域,深度学习模型如循环神经网络( RNN \text{RNN} RNN)及其变种( LSTM \text{LSTM} LSTM GRU \text{GRU} GRU)被广泛用作基准模型。
  • 自然语言处理:
    • 在自然语言处理领域, Transformer \text{Transformer} Transformer及其变种(如 BERT \text{BERT} BERT GPT \text{GPT} GPT)已成为许多任务的默认基准模型。

总结

  • 深度学习中的默认基准模型多种多样,其选择需基于问题的具体需求和数据特性。
    • 对于简单问题,如可通过线性权重解决的情况,逻辑回归等统计模型即可满足需求。
    • 而对于复杂问题,如对象识别、语音识别等“ AI \text{AI} AI-完全”类型任务,则需采用深度学习模型,如卷积网络( CNN \text{CNN} CNN)用于图像处理,循环神经网络( RNN \text{RNN} RNN)及其变体 LSTM \text{LSTM} LSTM GRU \text{GRU} GRU用于序列数据处理。
  • 此外, Transformer \text{Transformer} Transformer模型因其在自然语言处理领域的卓越表现,也成为处理序列数据的标准架构之一。在模型优化方面,选择合适的优化算法(如 SGD \text{SGD} SGD Adam \text{Adam} Adam)和正则化策略(如 Dropout \text{Dropout} Dropout batch normalization \text{batch normalization} batch normalization)同样重要。
  • 总之,深度学习的基准模型选择需综合考虑多种因素,以达到最佳效果。

这篇关于深度学习实用方法 - 默认的基准模型篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111187

相关文章

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

Nginx安全防护的多种方法

《Nginx安全防护的多种方法》在生产环境中,需要隐藏Nginx的版本号,以避免泄漏Nginx的版本,使攻击者不能针对特定版本进行攻击,下面就来介绍一下Nginx安全防护的方法,感兴趣的可以了解一下... 目录核心安全配置1.编译安装 Nginx2.隐藏版本号3.限制危险请求方法4.请求限制(CC攻击防御)

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被