深度学习实用方法 - 默认的基准模型篇

2024-08-27 08:44

本文主要是介绍深度学习实用方法 - 默认的基准模型篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

序言

在深度学习的广阔领域中,选择合适的基准模型是项目成功的关键一步。深度学习模型的选择不仅取决于问题的复杂性,还深受数据结构、任务类型及领域特性的影响。从简单的统计模型如逻辑回归到复杂的深度学习架构,每一步选择都需精心考量。本文将简要概述深度学习中默认的基准模型,旨在为读者提供一个清晰的起点,以便在面对不同问题时能够迅速定位并选用最合适的模型。

默认的基准模型

  • 确定性能度量和目标后,任何实际应用的下一步是尽快建立一个合理的端到端的系统。
  • 本篇给出了一些建议,在不同情况下使用哪种算法作为第一个基准方法。我们提供了关于不同情况下使用哪种算法作为第一基准方法的建议。值得注意的是,深度学习研究进展迅速,所以本书出版后很快可能会有更好的默认算法。
  • 根据问题的复杂性,项目开始时可能无需使用深度学习。如果可以只需正确选择几个线性权重来解决问题,那么项目可以开始于一个简单的统计模型,如逻辑回归。
  • 如果问题属于 “ AI \text{AI} AI-完成’’ 类的,如对象识别,语音识别,机器翻译,等等,那么项目开始于一个合适的深度学习模型,效果会比较好。
  • 首先,根据数据的结构选择一类合适的模型。
    • 如果项目是以固定大小的向量作为输入的监督学习,那么可以使用全连接的前馈网络。
    • 如果输入有已知的拓扑结构(例如,输入是图像),那么可以使用卷积网络。
    • 在这些情况下,刚开始可以使用某种逐点线性单元( ReLU \text{ReLU} ReLU或者其扩展,如 Leaky ReLU \text{Leaky ReLU} Leaky ReLU PReLU \text{PReLU} PReLU maxout \text{maxout} maxout)。
    • 如果输入或输出是一个序列,可以使用门控循环网络( LSTM \text{LSTM} LSTM GRU \text{GRU} GRU)。
  • 具有衰减学习率动量的 SGD \text{SGD} SGD是一个合理的优化算法选择(流行的衰减方法有,衰减到固定最低学习率的线性衰减,指数衰减,或每次发生验证错误高原时降低学习率 2 − 10 2 − 10 210 倍,这些衰减方法在不同问题上好坏不一)。另一个非常合理的选择是 Adam \text{Adam} Adam算法。 batch normalization \text{batch normalization} batch normalization对优化性能有着显著的影响,特别是对卷积网络和具有 sigmoid \text{sigmoid} sigmoid非线性函数的网络而言。虽然在最初的基准中忽略 batch normalization \text{batch normalization} batch normalization是合理的,然而当优化似乎出现问题时,应该立刻使用 batch normalization \text{batch normalization} batch normalization
  • 除非训练集包含数千万以上的样本,否则项目应该在一开始就包含一些简单的正则化。 提前终止也应该普遍采用。 Dropout \text{Dropout} Dropout也是一个很容易实现,且兼容很多模型和训练算法的良好正则化项。 batch normalization \text{batch normalization} batch normalization有时也能降低泛化误差,并且因为标准化每个变量的统计估计而带来的噪扰,可以省略 Dropout \text{Dropout} Dropout
  • 如果我们的任务和另一个被广泛研究的任务很相似,那么通过复制先前研究中已知性能良好的模型和算法,可能会得到很好的效果。甚至可以从该任务中复制一个训练好的模型。例如,通常会使用 ImageNet \text{ImageNet} ImageNet 上训练好的卷积网络的特征来解决其他计算机视觉问题 ( Girshick et al., 2015 \text{Girshick et al., 2015} Girshick et al., 2015)。
  • 一个常见问题是项目开始时是否使用无监督学习,我们将在后续篇章进一步探讨这个问题。
    • 这个问题和特定领域有关。在某些领域,比如自然语言处理,能够在很大程度上受益于无监督学习技术,如学习无监督词嵌入。
    • 在其他领域,如计算机视觉,除非是在半监督的设定下(有标签的样本数量很少) ( Kingma et al., 2014; Rasmus et al., 2015 \text{Kingma et al., 2014; Rasmus et al., 2015} Kingma et al., 2014; Rasmus et al., 2015),目前无监督学习并没有带来益处。
    • 如果应用所在环境中,无监督学习被认为是很重要的,那么将其包含在第一个端到端的基准中。否则,只有在解决无监督问题时,才第一次尝试就使用无监督学习。我们总能在之后发现初始基准过拟合的时候,加入无监督学习。

基准模型的定义

基准模型( Benchmark Model \text{Benchmark Model} Benchmark Model)通常是指在某一特定任务或数据集上表现良好,并被广泛接受作为性能评估标准的模型。它可以是简单的统计模型,如逻辑回归,也可以是复杂的深度学习模型,如卷积神经网络( CNN \text{CNN} CNN)或循环神经网络( RNN \text{RNN} RNN)。

选择默认基准模型的原则

  • 问题复杂性:
    • 对于简单问题,如线性可分的数据集,可以选择线性回归或逻辑回归等简单统计模型作为基准。
    • 对于复杂问题,如图像识别、语音识别等,通常需要选择深度学习模型作为基准,因为它们能够捕获数据中的复杂模式。
  • 数据结构:
    • 如果输入数据是固定大小的向量,可以选择全连接的前馈网络。
    • 如果输入数据具有已知的拓扑结构(如图像),则卷积网络( CNN \text{CNN} CNN)是更好的选择。
    • 对于序列数据(如文本或时间序列),可以选择循环神经网络( RNN \text{RNN} RNN)或其变种(如 LSTM \text{LSTM} LSTM GRU \text{GRU} GRU)。
  • 性能要求:
    • 在追求高精度时,可能需要选择更复杂、参数更多的模型。
    • 在资源受限的情况下(如计算资源有限、实时性要求高),则需要选择更轻量级的模型。
  • 先前研究:
    • 如果当前任务与先前研究中的任务相似,可以复制先前研究中已知性能良好的模型和算法作为基准。
    • 通过迁移学习,可以使用在相关任务上预训练的模型作为起点,进一步调整以适应当前任务。

常见的默认基准模型

  • 图像识别:
    • 在图像识别领域,常见的默认基准模型包括 AlexNet \text{AlexNet} AlexNet VGG \text{VGG} VGG ResNet \text{ResNet} ResNet等卷积神经网络。
  • 语音识别:
    • 在语音识别领域,深度学习模型如循环神经网络( RNN \text{RNN} RNN)及其变种( LSTM \text{LSTM} LSTM GRU \text{GRU} GRU)被广泛用作基准模型。
  • 自然语言处理:
    • 在自然语言处理领域, Transformer \text{Transformer} Transformer及其变种(如 BERT \text{BERT} BERT GPT \text{GPT} GPT)已成为许多任务的默认基准模型。

总结

  • 深度学习中的默认基准模型多种多样,其选择需基于问题的具体需求和数据特性。
    • 对于简单问题,如可通过线性权重解决的情况,逻辑回归等统计模型即可满足需求。
    • 而对于复杂问题,如对象识别、语音识别等“ AI \text{AI} AI-完全”类型任务,则需采用深度学习模型,如卷积网络( CNN \text{CNN} CNN)用于图像处理,循环神经网络( RNN \text{RNN} RNN)及其变体 LSTM \text{LSTM} LSTM GRU \text{GRU} GRU用于序列数据处理。
  • 此外, Transformer \text{Transformer} Transformer模型因其在自然语言处理领域的卓越表现,也成为处理序列数据的标准架构之一。在模型优化方面,选择合适的优化算法(如 SGD \text{SGD} SGD Adam \text{Adam} Adam)和正则化策略(如 Dropout \text{Dropout} Dropout batch normalization \text{batch normalization} batch normalization)同样重要。
  • 总之,深度学习的基准模型选择需综合考虑多种因素,以达到最佳效果。

这篇关于深度学习实用方法 - 默认的基准模型篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111187

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

禁止平板,iPad长按弹出默认菜单事件

通过监控按下抬起时间差来禁止弹出事件,把以下代码写在要禁止的页面的页面加载事件里面即可     var date;document.addEventListener('touchstart', event => {date = new Date().getTime();});document.addEventListener('touchend', event => {if (new

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]