本文主要是介绍Datawhale 夏令营 Task1:跑通YOLO方案baseline!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
YOLO数据处理
一.YOLO数据格式
YOLO数据格式为 <class> <x_center> <y_center> <width> <height>
二.制作数据集
1.新建文件夹及配置文件
if not os.path.exists('yolo-dataset/'):os.mkdir('yolo-dataset/')
if not os.path.exists('yolo-dataset/train'):os.mkdir('yolo-dataset/train')
if not os.path.exists('yolo-dataset/val'):os.mkdir('yolo-dataset/val')dir_path = os.path.abspath('./') + '/'# 需要按照你的修改path
with open('yolo-dataset/yolo.yaml', 'w', encoding='utf-8') as up:up.write(f'''
path: {dir_path}/yolo-dataset/
train: train/
val: val/names:0: 非机动车违停1: 机动车违停2: 垃圾桶满溢3: 违法经营
''')
2.数据转化
(1) 原始数据集
视频数据为mp4格式,标注文件为json格式,每个视频对应一个json文件。
json文件的内容是每帧检测到的违规行为,包括以下字段:
- frame_id:违规行为出现的帧编号
- event_id:违规行为ID
- category:违规行为类别
- bbox:检测到的违规行为矩形框的坐标,[xmin,ymin,xmax,ymax]形式
标注示例如下:
[{"frame_id": 20,"event_id": 1,"category": "机动车违停","bbox": [200, 300, 280, 400]},{"frame_id": 20,"event_id": 2,"category": "机动车违停","bbox": [600, 500, 720, 560]},{"frame_id": 30,"event_id": 3,"category": "垃圾桶满溢","bbox": [400, 500, 600, 660]}]
(2) 数据格式转化
遍历读取每个视频的每一帧,保存视频的每一个帧及根据帧的id找出对应的标签写入对应的txt文件。
json文件标注[xmin,ymin,xmax,ymax],而YOLO所需格式为【x_center,y_center,width,height】格式,因此在写入txt文件前需要进行格式转化
train_annos = glob.glob('训练集(有标注第一批)/标注/*.json')
train_videos = glob.glob('训练集(有标注第一批)/视频/*.mp4')
train_annos.sort(); train_videos.sort()category_labels = ["非机动车违停", "机动车违停", "垃圾桶满溢", "违法经营"]for anno_path, video_path in zip(train_annos[:5], train_videos[:5]):print(video_path)anno_df = pd.read_json(anno_path)cap = cv2.VideoCapture(video_path)frame_idx = 0 while True:ret, frame = cap.read()if not ret:breakimg_height, img_width = frame.shape[:2]frame_anno = anno_df[anno_df['frame_id'] == frame_idx]cv2.imwrite('./yolo-dataset/train/' + anno_path.split('/')[-1][:-5] + '_' + str(frame_idx) + '.jpg', frame)if len(frame_anno) != 0:with open('./yolo-dataset/train/' + anno_path.split('/')[-1][:-5] + '_' + str(frame_idx) + '.txt', 'w') as up:for category, bbox in zip(frame_anno['category'].values, frame_anno['bbox'].values):category_idx = category_labels.index(category)x_min, y_min, x_max, y_max = bboxx_center = (x_min + x_max) / 2 / img_widthy_center = (y_min + y_max) / 2 / img_heightwidth = (x_max - x_min) / img_widthheight = (y_max - y_min) / img_heightif x_center > 1:print(bbox)up.write(f'{category_idx} {x_center} {y_center} {width} {height}\n')frame_idx += 1
三. 模型训练
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
results = model.train(data="yolo-dataset/yolo.yaml", epochs=2, imgsz=1080, batch=16)
四. 模型输出
根据result.boxes.xyxy 的格式为【x_min,y_min,x_max,y_max】,因此保存json时无须转换。
from ultralytics import YOLO
model = YOLO("runs/detect/train/weights/best.pt")
import globfor path in glob.glob('测试集/*.mp4'):submit_json = []results = model(path, conf=0.05, imgsz=1080, verbose=False)for idx, result in enumerate(results):boxes = result.boxes # Boxes object for bounding box outputsmasks = result.masks # Masks object for segmentation masks outputskeypoints = result.keypoints # Keypoints object for pose outputsprobs = result.probs # Probs object for classification outputsobb = result.obb # Oriented boxes object for OBB outputsif len(boxes.cls) == 0:continuexyxy = boxes.xyxy.data.cpu().numpy().round()cls = boxes.cls.data.cpu().numpy().round()conf = boxes.conf.data.cpu().numpy()for i, (ci, xy, confi) in enumerate(zip(cls, xyxy, conf)):submit_json.append({'frame_id': idx,'event_id': i+1,'category': category_labels[int(ci)],'bbox': list([int(x) for x in xy]),"confidence": float(confi)})with open('./result/' + path.split('/')[-1][:-4] + '.json', 'w', encoding='utf-8') as up:json.dump(submit_json, up, indent=4, ensure_ascii=False)
这篇关于Datawhale 夏令营 Task1:跑通YOLO方案baseline!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!