torch.mean

2024-08-26 23:58
文章标签 torch mean

本文主要是介绍torch.mean,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

mean()函数的参数:dim=0,按行求平均值,返回的形状是(1,列数);dim=1,按列求平均值,返回的形状是(行数,1),默认不设置dim的时候,返回的是所有元素的平均值。

x=torch.arange(12).view(4,3)
'''
注意:在这里使用的时候转一下类型,否则会报RuntimeError: Can only calculate the mean of floating types. Got Long instead.的错误。
查看了一下x元素类型是torch.int64,根据提示添加一句x=x.float()转为tensor.float32就行
'''
x=x.float()
x_mean=torch.mean(x)
x_mean0=torch.mean(x,dim=0,keepdim=True)
x_mean1=torch.mean(x,dim=1,keepdim=True)
print('x:')
print(x)
print('x_mean0:')
print(x_mean0)
print('x_mean1:')
print(x_mean1)
print('x_mean:')
print(x_mean)

查看了一下x元素类型是torch.int64,根据提示添加一句x=x.float()转为tensor.float32就行
输出结果:

x:
tensor([[ 0.,  1.,  2.],[ 3.,  4.,  5.],[ 6.,  7.,  8.],[ 9., 10., 11.]])
x_mean0:
tensor([[4.5000, 5.5000, 6.5000]])
x_mean1:
tensor([[ 1.],[ 4.],[ 7.],[10.]])
x_mean:
tensor(5.5000)

torch.mean().mean()

x=torch.arange(24).view(4,3,2)
x=x.float()
x_mean=torch.mean(x)
print(x)
print(x.mean())
print(x.mean(dim=0,keepdim=True).mean(dim=1,keepdim=True).mean(dim=2,keepdim=True))
print(x.mean(dim=1,keepdim=True).mean(dim=2,keepdim=True))

输出:

tensor([[[ 0.,  1.],[ 2.,  3.],[ 4.,  5.]],[[ 6.,  7.],[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.],[16., 17.]],[[18., 19.],[20., 21.],[22., 23.]]])
tensor(11.5000)
tensor([[[11.5000]]])
tensor([[[ 2.5000]],[[ 8.5000]],[[14.5000]],[[20.5000]]])

torch.mean()和torch.mean(dim=0).mean(dim=1)的区别

以二维为例:torch.mean()返回的是一个标量,而torch.mean(dim=0).mean(dim=1)返回的是一个1行1列的张量,虽然数值相同

x=torch.arange(12).view(4,3)
x=x.float()
x_mean=torch.mean(x)
print(x_mean)
y= x.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True)
print(y)

输出:

tensor(5.5000)
tensor([[5.5000]])

 

这篇关于torch.mean的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110049

相关文章

pytorch torch.nn.functional.one_hot函数介绍

torch.nn.functional.one_hot 是 PyTorch 中用于生成独热编码(one-hot encoding)张量的函数。独热编码是一种常用的编码方式,特别适用于分类任务或对离散的类别标签进行处理。该函数将整数张量的每个元素转换为一个独热向量。 函数签名 torch.nn.functional.one_hot(tensor, num_classes=-1) 参数 t

torch.nn 与 torch.nn.functional的区别?

区别 PyTorch中torch.nn与torch.nn.functional的区别是:1.继承方式不同;2.可训练参数不同;3.实现方式不同;4.调用方式不同。 1.继承方式不同 torch.nn 中的模块大多数是通过继承torch.nn.Module 类来实现的,这些模块都是Python 类,需要进行实例化才能使用。而torch.nn.functional 中的函数是直接调用的,无需

torch.backends.cudnn.benchmark和torch.use_deterministic_algorithms总结学习记录

经常使用PyTorch框架的应该对于torch.backends.cudnn.benchmark和torch.use_deterministic_algorithms这两个语句并不陌生,在以往开发项目的时候可能专门化花时间去了解过,也可能只是浅尝辄止简单有关注过,正好今天再次遇到了就想着总结梳理一下。 torch.backends.cudnn.benchmark 是 PyTorch 中的一个设置

【稀疏矩阵】使用torch.sparse模块

文章目录 稀疏矩阵的格式coocsrcsc Construction of Sparse COO tensorsConstruction of CSR tensorsLinear Algebra operations(稀疏与稠密之间混合运算)Tensor methods and sparse(与稀疏有关的tensor成员函数)coo张量可用的tensor成员函数(经实测,csr也有一些可以用

【PyTorch】深入解析 `with torch.no_grad():` 的高效用法

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 引言一、`with torch.no_grad():` 的作用二、`with torch.no_grad():` 的原理三、`with torch.no_grad():` 的高效用法3.1 模型评估3.2 模型推理3.3

【PyTorch常用库函数】torch.add():张量的加法操作

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一 、torch.add()函数的基本用法二、示例演示示例1:两个相同形状的一维张量相加示例2:两个不同形状的一维张量相加(错误示例)示例3:使用alpha参数进行加权加法 结尾 前言 PyTorch作为一

PyTorch常用库函数:torch.acos()的详解实战使用

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 引言一、函数简介1.2 函数语法1.3 参数说明 二、 示例代码2.1 注意事项 总结 引言 PyTorch 是一个流行的深度学习框架,它提供了丰富的库函数,用于处理张量(多维数组)的各种操作。在科学计算和深度

mean shift图像分割(一)

mean shift均值偏移算法,可以用于图像分割(类聚)或者视频跟踪。在图像分割上是寻找一副图像的特征空间中的概率密度极值点,以极值点为类聚来平滑分隔。概率密度主要用非参数概率密度估计方法,其中核密度估计较为常用。密度极值点的寻找用密度梯度方法进行迭代寻找。 meanshift可分割需要建立在图像特征空间可分的基础上,也就是需要找到一个合适的特征空间,图像映射到这个空间上后,目标和背景可以

【pytorch】torch、torchaudio、torchvision版本对应关系

在官网查询版本对应关系 https://pytorch.org/get-started/previous-versions/