【PyTorch】深入解析 `with torch.no_grad():` 的高效用法

2024-09-04 11:52

本文主要是介绍【PyTorch】深入解析 `with torch.no_grad():` 的高效用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


在这里插入图片描述

🎬 鸽芷咕:个人主页

 🔥 个人专栏: 《C++干货基地》《粉丝福利》

⛺️生活的理想,就是为了理想的生活!

文章目录

    • 引言
    • 一、`with torch.no_grad():` 的作用
    • 二、`with torch.no_grad():` 的原理
    • 三、`with torch.no_grad():` 的高效用法
      • 3.1 模型评估
      • 3.2 模型推理
      • 3.3 模型保存和加载
    • 四、总结

引言

在深度学习训练中,我们经常需要评估模型的性能,或者对模型进行推理。这些操作通常不需要计算梯度,而计算梯度会带来额外的内存和计算开销。那么,如何在PyTorch中避免不必要的梯度计算,同时又能保持代码的简洁和高效呢?

  • 答案就是使用with torch.no_grad():。接下来,我们将详细探讨这个上下文管理器的工作原理和高效用法。

一、with torch.no_grad(): 的作用

with torch.no_grad(): 的主要作用是在指定的代码块中暂时禁用梯度计算。这在以下两种情况下特别有用:

  1. 模型评估:在训练过程中,我们经常需要评估模型的准确率、损失等指标。这些操作不需要梯度信息,因此可以禁用梯度计算以节省资源。
  2. 模型推理:在模型部署到生产环境进行推理时,我们不需要计算梯度,只关心模型的输出。

二、with torch.no_grad(): 的原理

在PyTorch中,每次调用backward()函数时,框架会计算所有requires_grad为True的Tensor的梯度。with torch.no_grad(): 通过将Tensor的requires_grad属性设置为False,来阻止梯度计算。当退出这个上下文管理器时,requires_grad属性会恢复到原来的状态。

三、with torch.no_grad(): 的高效用法

下面,我们将通过几个例子来展示with torch.no_grad():的高效用法。

3.1 模型评估

在模型训练过程中,我们通常会在每个epoch结束后评估模型的性能。以下是如何使用with torch.no_grad():来评估模型的一个例子:

model.eval()  # 将模型设置为评估模式
with torch.no_grad():  # 禁用梯度计算correct = 0total = 0for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the test images: {100 * correct / total}%')

3.2 模型推理

在模型推理时,我们同样可以使用with torch.no_grad():来提高效率:

model.eval()  # 将模型设置为评估模式
with torch.no_grad():  # 禁用梯度计算input_tensor = torch.randn(1, 3, 224, 224)  # 假设输入张量output = model(input_tensor)print(output)

3.3 模型保存和加载

在保存和加载模型时,我们也可以使用with torch.no_grad():来避免不必要的梯度计算:

torch.save(model.state_dict(), 'model.pth')
with torch.no_grad():  # 禁用梯度计算model = TheModelClass(*args, **kwargs)model.load_state_dict(torch.load('model.pth'))

四、总结

with torch.no_grad(): 是PyTorch中一个非常有用的上下文管理器,它可以帮助我们在不需要梯度计算的情况下节省内存和计算资源。通过在模型评估、推理以及保存加载模型时使用它,我们可以提高代码的效率和性能。掌握with torch.no_grad():的正确用法,对于每个PyTorch开发者来说都是非常重要的。

这篇关于【PyTorch】深入解析 `with torch.no_grad():` 的高效用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135949

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入手撕链表

链表 分类概念单链表增尾插头插插入 删尾删头删删除 查完整实现带头不带头 双向链表初始化增尾插头插插入 删查完整代码 数组 分类 #mermaid-svg-qKD178fTiiaYeKjl {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景