【稀疏矩阵】使用torch.sparse模块

2024-09-05 12:44

本文主要是介绍【稀疏矩阵】使用torch.sparse模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 稀疏矩阵的格式
    • coo
    • csr
    • csc
  • Construction of Sparse COO tensors
  • Construction of CSR tensors
  • Linear Algebra operations(稀疏与稠密之间混合运算)
  • Tensor methods and sparse(与稀疏有关的tensor成员函数)
    • coo张量可用的tensor成员函数(经实测,csr也有一些可以用,比如dim())
  • Torch functions specific to sparse Tensors(与稀疏有关的torch函数)
  • 支持稀疏张量的常规torch函数
  • 支持稀疏张量的一元函数


稀疏矩阵的格式

目前,torch.sparse和scipy.sparse模块比较支持的主流的稀疏矩阵格式有coo格式、csr格式和csc格式,这三种格式中可供使用的API也最多。

coo

将矩阵中非零元素的坐标和值分开存储在3个数组中,3个数组长度必须相同,表示有n个非零元素。

在这里插入图片描述

csr

Index PointersIndicesData3个数组存储。

  • Index Pointers:第 i个元素记录这个矩阵的第 i行的第1个非零值在 Data数组的起始位置,第 i+1个元素记录这个矩阵的第 i行的最后一个非零值在 Data数组的终止位置(不包含右边界)。因此,这个矩阵的行数等于 len(Index Pointers)-1,第 i行非零值的个数等于 Index Pointers[i+1]-Index Pointers[i]
  • Indices:第 i个元素记录这个矩阵的第 i个非零值的列坐标。
  • Data:第 i个元素记录这个矩阵的第 i个非零值的具体数值,排列顺序严格按照行优先,列次先

在这里插入图片描述

csc

与csr唯一的不同在于列优先,其他规则一模一样。

在这里插入图片描述

Construction of Sparse COO tensors

  1. 常规构建
>>> i = [[0, 1, 1],[2, 0, 2]]
>>> v =  [3, 4, 5]
>>> s = torch.sparse_coo_tensor(i, v, (2, 3))
>>> s
tensor(indices=tensor([[0, 1, 1],[2, 0, 2]]),values=tensor([3, 4, 5]),size=(2, 3), nnz=3, layout=torch.sparse_coo)
>>> s.to_dense()
tensor([[0, 0, 3],[4, 0, 5]])

torch中,稀疏矩阵的存储方式记录在 tensor.layout中,可以通过检查 torch.layout == torch.sparse_coo来判断是否是coo张量。此外,稠密张量的 layout等于 strided

  1. 稠密混合的coo张量
>>> i = [[0, 1, 1],[2, 0, 2]]
>>> v =  [[3, 4], [5, 6], [7, 8]]
>>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2))
>>> s
tensor(indices=tensor([[0, 1, 1],[2, 0, 2]]),values=tensor([[3, 4],[5, 6],[7, 8]]),size=(2, 3, 2), nnz=3, layout=torch.sparse_coo)

此方案与常规的coo构建方式不同,values中每个元素可以是一个向量,表示对应坐标的稠密张量,因此,创建出的coo张量也多出了一个维度。

  1. 带有重复坐标的coo张量
>>> i = [[1, 1]]
>>> v =  [3, 4]
>>> s=torch.sparse_coo_tensor(i, v, (3,))
>>> s
tensor(indices=tensor([[1, 1]]),values=tensor(  [3, 4]),size=(3,), nnz=2, layout=torch.sparse_coo)
>>> s.to_dense()
tensor([0, 7, 0])

如果输入的坐标有重复,则创建出的coo张量会自动把坐标重复的元素值相加。此外,可以通过成员函数 .coalesce()把重复坐标的元素值相加,将这个coo转换成一个不重复的张量;也可以通过 .is_coalesced()检查这个coo是否存在重复的坐标。

Construction of CSR tensors

按照 Index PointersIndicesData三个数组的定义构建即可。

>>> crow_indices = torch.tensor([0, 2, 4])
>>> col_indices = torch.tensor([0, 1, 0, 1])
>>> values = torch.tensor([1, 2, 3, 4])
>>> csr = torch.sparse_csr_tensor(crow_indices, col_indices, values, dtype=torch.float64)
>>> csr
tensor(crow_indices=tensor([0, 2, 4]),col_indices=tensor([0, 1, 0, 1]),values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4,dtype=torch.float64)
>>> csr.to_dense()
tensor([[1., 2.],[3., 4.]], dtype=torch.float64)

Linear Algebra operations(稀疏与稠密之间混合运算)

M表示2-D张量,V表示1-D张量,f表示标量,*表示逐元素乘法,@表示矩阵乘法。M[SparseSemiStructured]表示一种半结构化的稀疏矩阵,此处不再展开,可以自行去torch官网察看。

PyTorch operationSparse gradLayout signature
torch.mv()noM[sparse_coo] @ V[strided] -> V[strided]
torch.mv()noM[sparse_csr] @ V[strided] -> V[strided]
torch.matmul()noM[sparse_coo] @ M[strided] -> M[strided]
torch.matmul()noM[sparse_csr] @ M[strided] -> M[strided]
torch.matmul()noM[SparseSemiStructured] @ M[strided] -> M[strided]
torch.matmul()noM[strided] @ M[SparseSemiStructured] -> M[strided]
torch.mm()noM[strided] @ M[SparseSemiStructured] -> M[strided]
torch.mm()noM[sparse_coo] @ M[strided] -> M[strided]
torch.mm()noM[SparseSemiStructured] @ M[strided] -> M[strided]
torch.sparse.mm()yesM[sparse_coo] @ M[strided] -> M[strided]
torch.smm()noM[sparse_coo] @ M[strided] -> M[sparse_coo]
torch.hspmm()noM[sparse_coo] @ M[strided] -> M[hybrid sparse_coo]
torch.bmm()noT[sparse_coo] @ T[strided] -> T[strided]
torch.addmm()nof * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]
torch.addmm()nof * M[strided] + f * (M[SparseSemiStructured] @ M[strided]) -> M[strided]
torch.addmm()nof * M[strided] + f * (M[strided] @ M[SparseSemiStructured]) -> M[strided]
torch.sparse.addmm()yesf * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]
torch.sspaddmm()nof * M[sparse_coo] + f * (M[sparse_coo] @ M[strided]) -> M[sparse_coo]
torch.lobpcg()noGENEIG(M[sparse_coo]) -> M[strided], M[strided]
torch.pca_lowrank()yesPCA(M[sparse_coo]) -> M[strided], M[strided], M[strided]
torch.svd_lowrank()yesSVD(M[sparse_coo]) -> M[strided], M[strided], M[strided]

以上API中,如果 Layout signature中提供了 @或者 *操作符,就不需要记住API,直接通过操作符即可隐式调用对应的API。如:

>>> a = torch.tensor([[0, 0, 1, 0], [1, 2, 0, 0], [0, 0, 0, 0]], dtype=torch.float64)
>>> sp = a.to_sparse_csr()
>>> vec = torch.randn(4, 1, dtype=torch.float64)
>>> sp.matmul(vec)
tensor([[ 0.4788],[-3.2338],[ 0.0000]], dtype=torch.float64)
>>> sp @ vec
tensor([[ 0.4788],[-3.2338],[ 0.0000]], dtype=torch.float64)

需要注意的是,使用操作符在稀疏张量和稠密张量之间乘法运算时,返回的都是稠密张量。如果想要返回稀疏张量,需要显式使用torch.smm()

torch同样支持稀疏与稀疏之间的运算,但要求输入的稀疏张量必须具有相同的稀疏结构,否则会报错,返回的稀疏张量的稀疏结构也与输入相同。

乘法运算:

>>> a = torch.tensor([[0, 0, 1, 0], [1, 2, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0]], dtype=torch.float64)
>>> b = torch.tensor([[0, 0, 2, 0], [3, 1, 0, 0], [0, 0, 4, 0], [1, 0, 0, 1]], dtype=torch.float64)
>>> sp1 = a.to_sparse_coo()
>>> sp2 = b.to_sparse_coo()
>>> sp1 @ sp2
tensor(indices=tensor([[0, 1, 1, 1, 2, 2, 3],[2, 0, 1, 2, 0, 1, 2]]),values=tensor([4., 6., 2., 2., 3., 1., 2.]),size=(4, 4), nnz=7, dtype=torch.float64, layout=torch.sparse_coo)

加法运算

>>> a = torch.tensor([[0, 0, 1, 0], [1, 2, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0]], dtype=torch.float64)
>>> b = torch.tensor([[0, 0, 2, 0], [3, 1, 0, 0], [0, 0, 4, 0], [1, 0, 0, 1]], dtype=torch.float64)
>>> sp1 = a.to_sparse_coo()
>>> sp2 = b.to_sparse_coo()
>>> sp3 = b.to_sparse_csr()
>>> sp1 + sp2
tensor(indices=tensor([[0, 1, 1, 2, 2, 3, 3],[2, 0, 1, 1, 2, 0, 3]]),values=tensor([3., 4., 3., 1., 4., 2., 1.]),size=(4, 4), nnz=7, dtype=torch.float64, layout=torch.sparse_coo)
>>> sp1 + sp3
UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\SparseCsrTensorImpl.cpp:55.)sp3 = b.to_sparse_csr()
Traceback (most recent call last):File "C:\Users\Xu Han\Desktop\pycharm-projects\MD_notes\main.py", line 18, in <module>print(sp1 + sp3)
RuntimeError: memory format option is only supported by strided tensors

Tensor methods and sparse(与稀疏有关的tensor成员函数)

PyTorch operationreturn
Tensor.is_sparseIsTrue if the Tensor uses sparse COO storage layout, False otherwise.
Tensor.is_sparse_csrIsTrue if the Tensor uses sparse CSR storage layout, False otherwise.
Tensor.dense_dimReturn the number of dense dimensions in a sparse tensorself.
Tensor.sparse_dimReturn the number of sparse dimensions in a sparse tensorself.

这里打断一下表格,讲解一下dense_dim和sparse_dim的含义。上文中,我们曾构建过稠密混合的coo张量,如下:

>>> i = [[0, 1, 1],[2, 0, 2]]
>>> v =  [[3, 4], [5, 6], [7, 8]]
>>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2))
>>> s
tensor(indices=tensor([[0, 1, 1],[2, 0, 2]]),values=tensor([[3, 4],[5, 6],[7, 8]]),size=(2, 3, 2), nnz=3, layout=torch.sparse_coo)

那么,对于这个tensor,它的dense_dim为1,sparse_dim为2。

此外,在进行稀疏与稀疏之间的数学运算时,一定要保证稀疏张量的sparse_dim等于2.

继续表格。

PyTorch operationreturn
Tensor.sparse_maskReturns a new sparse tensor with values from a strided tensorself filtered by the indices of the sparse tensor mask.
Tensor.to_sparseReturns a sparse copy of the tensor.
Tensor.to_sparse_cooConvert a tensor to coordinate format.
Tensor.to_sparse_csrConvert a tensor to compressed row storage format (CSR).
Tensor.to_sparse_cscConvert a tensor to compressed column storage (CSC) format.
Tensor.to_sparse_bsrConvert a tensor to a block sparse row (BSR) storage format of given blocksize.
Tensor.to_sparse_bscConvert a tensor to a block sparse column (BSC) storage format of given blocksize.
Tensor.to_denseCreates a strided copy ofself if self is not a strided tensor, otherwise returns self.
Tensor.valuesReturn the values tensor of a sparse COO tensor.

以下是仅限coo张量的成员:

PyTorch operationreturn
Tensor.coalesceReturns a coalesced copy ofself if self is an uncoalesced tensor.
Tensor.sparse_resize_Resizesself sparse tensor to the desired size and the number of sparse and dense dimensions.
Tensor.sparse_resize_and_clear_Removes all specified elements from a sparse tensorself and resizes self to the desired size and the number of sparse and dense dimensions.
Tensor.is_coalescedReturnsTrue if self is a sparse COO tensor that is coalesced, False otherwise.
Tensor.indicesReturn the indices tensor of a sparse COO tensor.

以下是仅限csr和bsr张量的成员:

PyTorch operationreturn
Tensor.crow_indicesReturns the tensor containing the compressed row indices of theself tensor when self is a sparse CSR tensor of layout sparse_csr.
Tensor.col_indicesReturns the tensor containing the column indices of theself tensor when self is a sparse CSR tensor of layout sparse_csr.

以下是仅限csc和bsc张量的成员:

PyTorch operationreturn
Tensor.row_indices
Tensor.ccol_indices

coo张量可用的tensor成员函数(经实测,csr也有一些可以用,比如dim())

add() add_() addmm() addmm_() any() asin() asin_() arcsin() arcsin_() bmm() clone() deg2rad() deg2rad_() detach() detach_() dim() div() div_() floor_divide() floor_divide_() get_device() index_select() isnan() log1p() log1p_() mm() mul() mul_() mv() narrow_copy() neg() neg_() negative() negative_() numel() rad2deg() rad2deg_() resize_as_() size() pow() sqrt() square() smm() sspaddmm() sub() sub_() t() t_() transpose() transpose_() zero_()

Torch functions specific to sparse Tensors(与稀疏有关的torch函数)

PyTorch operationreturn
sparse_coo_tensorConstructs a sparse tensor in COO(rdinate) format with specified values at the givenindices.
sparse_csr_tensorConstructs a sparse tensor in CSR (Compressed Sparse Row) with specified values at the givencrow_indices and col_indices.
sparse_csc_tensorConstructs a sparse tensor in CSC (Compressed Sparse Column) with specified values at the givenccol_indices and row_indices.
sparse_bsr_tensorConstructs a sparse tensor in BSR (Block Compressed Sparse Row)) with specified 2-dimensional blocks at the givencrow_indices and col_indices.
sparse_bsc_tensorConstructs a sparse tensor in BSC (Block Compressed Sparse Column)) with specified 2-dimensional blocks at the givenccol_indices and row_indices.
sparse_compressed_tensorConstructs a sparse tensor in Compressed Sparse format - CSR, CSC, BSR, or BSC - with specified values at the givencompressed_indices and plain_indices.
sparse.sumReturn the sum of each row of the given sparse tensor.
sparse.addmmThis function does exact same thing as torch.addmm() in the forward, except that it supports backward for sparse COO matrixmat1.
sparse.sampled_addmmPerforms a matrix multiplication of the dense matricesmat1 and mat2 at the locations specified by the sparsity pattern of input.
sparse.mmPerforms a matrix multiplication of the sparse matrixmat1
sspaddmmMatrix multiplies a sparse tensormat1 with a dense tensor mat2, then adds the sparse tensor input to the result.
hspmmPerforms a matrix multiplication of a sparse COO matrixmat1 and a strided matrix mat2.
smmPerforms a matrix multiplication of the sparse matrixinput with the dense matrix mat.
sparse.softmaxApplies a softmax function.
sparse.log_softmaxApplies a softmax function followed by logarithm.
sparse.spdiagsCreates a sparse 2D tensor by placing the values from rows ofdiagonals along specified diagonals of the output

支持稀疏张量的常规torch函数

cat() dstack() empty() empty_like() hstack() index_select() is_complex() is_floating_point() is_nonzero() is_same_size() is_signed() is_tensor() lobpcg() mm() native_norm() pca_lowrank() select() stack() svd_lowrank() unsqueeze() vstack() zeros() zeros_like()

支持稀疏张量的一元函数

The following operators currently support sparse COO/CSR/CSC/BSR tensor inputs.

abs() asin() asinh() atan() atanh() ceil() conj_physical() floor() log1p() neg() round() sin() sinh() sign() sgn() signbit() tan() tanh() trunc() expm1() sqrt() angle() isinf() isposinf() isneginf() isnan() erf() erfinv()

这篇关于【稀疏矩阵】使用torch.sparse模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138998

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa