inflight 守恒算法的实现和仿真

2024-08-26 23:28

本文主要是介绍inflight 守恒算法的实现和仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面介绍过,只要某条流的 inflt 在 bdp 之外再增加一个相等的余量 I,即 inflt = bdp + I,比如 I = 2,I = 3,…,就一定会收敛到公平,且不会占据过多 buffer,因此 rtt 不会膨胀,I 的大小影响收敛速度,I 越大,收敛越快,但 buffer 占据也更多,I 越小,收敛越慢,但 buffer 占据更少,所以效率和公平的 tradeoff 在此体现。

记住这个简洁的结论,然后将 I 调整为动态的负反馈,就是一个新算法,该算法占据 “一定量” 的 buffer 而不是像 aimd 那样抖动,占据 buffer 的大小由 I 的均值决定。平稳压倒一切,抖动是低效的根源,始终占据一定量的 buffer 是可以接受的,通过调参可以将这个 “一定量” 压到尽可能小。

简单用 c 实现了一版 inflight 守恒算法,非常简洁:

#include <stdio.h>
#include <stdlib.h>#define BW_FILTER_LEN 10double RTPROP = 1;
double C = 100.0; // bottleneck_link_bw
double I = 0.0;struct es {double E;double bw;
};struct ebest_flow {int index;               /* flow identifier */int status;double I;double inflt;double min_rtt;double srtt;double sending_bw;       /* current receive bw */double receive_bw;       /* current receive bw */struct es max_e;           /* current estimated bw */struct es e_samples[BW_FILTER_LEN];int phase_offset;
};struct ebest_flow f1;
struct ebest_flow f2;
struct ebest_flow f3;
struct ebest_flow f4;int t = 0;
int bw_filter_index = 0;#define max(a, b) (a > b) ? (a) : (b)
#define min(a, b) (a < b) ? (a) : (b)void ebest_set_max_e(struct ebest_flow *f)
{int i = 0;f->max_e.bw = 0;for (i = 0; i < BW_FILTER_LEN; i++) {f->max_e.E = max(f->max_e.E, f->e_samples[i].E);f->max_e.bw = f->e_samples[i].bw;}f->I = 0.7 * f->I + 0.3 * 40 * f->min_rtt * f->max_e.bw/(20 * f->min_rtt + f->max_e.bw * f->srtt) * (f->min_rtt / f->srtt);
}void ebest_update_maxbw_minrtt(struct ebest_flow *f, double rtt)
{rtt = (rtt > RTPROP)?:RTPROP;f->e_samples[bw_filter_index].E = f->receive_bw / rtt;f->e_samples[bw_filter_index].bw = f->receive_bw;ebest_set_max_e(f);if (rtt <= f->min_rtt) {f->srtt = f->min_rtt = rtt;} else {f->srtt = rtt;}
}void ebest_update_sending_bw(struct ebest_flow *f)
{f->inflt = f->max_e.bw * f->min_rtt + f->I;printf("#### f: %d  %.3f\n", f->index, f->I);f->sending_bw = f->max_e.bw;printf("flow %d phase: %d max_bw: %.3f sending_bw: %.3f\n",f->index, 0, f->max_e.bw, f->sending_bw);
}void simulate_one_phase(int i)
{double rtt;//if (i == 1500)//  C = 160;//if (i == 2500)//  C = 40;ebest_update_sending_bw(&f1);ebest_update_sending_bw(&f2);ebest_update_sending_bw(&f3);ebest_update_sending_bw(&f4);printf("t= %04d sending: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.sending_bw, f2.sending_bw, f3.sending_bw, f4.sending_bw);double total_I = 0;if (i < 1000) {rtt = (f1.inflt + f2.inflt + f3.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt + f3.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt + f3.inflt);f3.receive_bw = C * f3.inflt / (f1.inflt + f2.inflt + f3.inflt);f4.receive_bw = 0;f4.max_e.bw = 0;f4.inflt = 0;if (i == 999) {f4.max_e.bw = 0.1 * C;f4.inflt = 0.1 * C * RTPROP + I;f4.I = I;f4.receive_bw = 0.1 * C;printf("@@@@### time: %d  f1: %.3f  f2: %.3f  f3: %.3f  f4: %.3f \n", t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);}total_I = f1.I + f2.I + f3.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);} else if (i >= 1000 && i < 2000) {rtt = (f1.inflt + f2.inflt + f3.inflt + f4.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f3.receive_bw = C * f3.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f4.receive_bw = C * f4.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);if (i < 1100) {printf("@@@@### time: %d  f1: %.3f  f2: %.3f  f3: %.3f  f4: %.3f \n", t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);}total_I = f1.I + f2.I + f3.I + f4.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);} else {rtt = (f1.inflt + f2.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt);f3.receive_bw = 0;f4.receive_bw = 0;f3.max_e.bw = 0;f4.max_e.bw = 0;f3.inflt = 0;f4.inflt = 0;total_I = f1.I + f2.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);}if (rtt < RTPROP)rtt = RTPROP;printf("t= %04d receive: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.receive_bw, f2.receive_bw, f3.receive_bw, f4.receive_bw);ebest_update_maxbw_minrtt(&f1, rtt);ebest_update_maxbw_minrtt(&f2, rtt);ebest_update_maxbw_minrtt(&f3, rtt);ebest_update_maxbw_minrtt(&f4, rtt);printf("t= %04d  max_bw: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.max_e.bw, f2.max_e.bw, f3.max_e.bw, f4.max_e.bw);printf("t= %04d  inflt: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);printf("t= %04d  min_rtt: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, rtt, f2.min_rtt, f3.min_rtt, f4.min_rtt);t++;bw_filter_index = (bw_filter_index + 1) % BW_FILTER_LEN;
}int main(int argc, char *argv[])
{int i = 0;if (argc > 1) I = atof(argv[1]);f1.index = 1;f2.index = 2;f3.index = 3;f4.index = 4;f1.max_e.bw = 0.9 * C;f2.max_e.bw = 0.3 * C;f3.max_e.bw = 0.6 * C;f1.max_e.E = f1.max_e.bw / RTPROP;f2.max_e.E = f2.max_e.bw / RTPROP;f3.max_e.E = f3.max_e.bw / RTPROP;f1.I = I;f2.I = I;f3.I = I;f4.I = 0;f1.srtt = f1.min_rtt = RTPROP;f2.srtt = f2.min_rtt = RTPROP;f3.srtt = f3.min_rtt = RTPROP;f4.srtt = f4.min_rtt = RTPROP;f1.inflt = 0.1 * C * RTPROP;f2.inflt = 0.3 * C * RTPROP;f3.inflt = 0.6 * C * RTPROP;f1.e_samples[BW_FILTER_LEN - 1] = f1.max_e;f2.e_samples[BW_FILTER_LEN - 1] = f2.max_e;f3.e_samples[BW_FILTER_LEN - 1] = f3.max_e;for (i = 0; i < 3000; i++) {simulate_one_phase(i);}return 0;
}

算法和建模分别参见 inflight 守恒背后的哲学 与 inflight 守恒数学建模.

这个算法的核心只需要设置 remain 余量,剩下的跟踪 E_best = max(bw / delay) 即可,因此 remain 一定是个负反馈方程:

R e m a i n = α ⋅ R T T m i n ⋅ B W w h e n _ E _ b e s t β ⋅ R T T m i n + B W w h e n _ E _ b e s t ⋅ R T T s m o o t h ⋅ R T T m i n R T T s m o o t h Remain=\dfrac{\alpha\cdot RTT_{min}\cdot BW_{when\_E\_best}}{\beta \cdot RTT_{min}+BW_{when\_E\_best}\cdot RTT_{smooth}}\cdot \dfrac{RTT_{min}}{RTT_{smooth}} Remain=βRTTmin+BWwhen_E_bestRTTsmoothαRTTminBWwhen_E_bestRTTsmoothRTTmin

效果如下:
在这里插入图片描述

明显有负反馈效果,但还是需要增加自由度,继续调参,我需要的效果是无论多少条流,所有流的 Remain 之和在一个有限范围内。

而 inflt 收敛效果如下:
在这里插入图片描述

rtt 平稳且并未膨胀:
在这里插入图片描述

浙江温州皮鞋湿,下雨进水不会胖。

这篇关于inflight 守恒算法的实现和仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109981

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核