地铁通勤,拥挤之痛:你有同感吗?如何通过数据优化公共交通拥挤

2024-08-26 12:04

本文主要是介绍地铁通勤,拥挤之痛:你有同感吗?如何通过数据优化公共交通拥挤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

*文章来自美国Minitab官网

当 2020 年新冠疫情来袭时,公共交通组织重新分配了资源。许多地方削减了地铁时刻表,并专注于轨道建设、基础设施和安全培训。

随着员工开始以混合办公或全职的方式返回办公室,许多公共交通组织未能充分调整时刻表。这导致了安全问题、不卫生的状况、火车过度拥挤以及乘客的失望。

作为一名经常往返于芝加哥市中心办公室的通勤者,我在过去几年里注意到了这些变化,并认为我们应该进行调查。在 Minitab Workspace 和 Minitab 统计软件的帮助下,这些问题可以得到解决。以下是方法。

一个用例:什么让乘客感到困扰?

在一个假设的场景中,一个中西部的主要交通管理部门进行了一次客户调查,以衡量客户满意度并确定需要改进的领域。令他们惊讶的是,大多数客户并不满意。有几个原因被注意到。该团队使用 Minitab Workspace 来可视化客户最常见的投诉:

他们注意到最常见的投诉是 “高峰时段拥堵”。在早高峰时段(周一至周五上午 5 点至 10 点)尤其如此。下一步是使用 Minitab 统计软件来可视化这些数据。

数据可视化:乘客何时使用公共交通?

该团队花了几周时间收集数据,以确定每趟地铁大约有多少人乘坐。一旦他们收集了所有相关数据,他们在 Minitab 中创建了两种不同的可视化图表,一个箱线图和一个散点图。以下是他们的数据样子:

他们的数据显示,周二、周三和周四的乘客量最大,其中周三上午 8:20 和 8:40 的地铁使用最为频繁。

我们如何解决这个问题呢?

该公司的领导随后按日划分数据,并使用回归分析来更好地理解每天的数据趋势。以下是 Minitab 为周三生成的拟合线图:

在这种情况下,领导可以使用这个方程来预测周三一天中任何时间的乘客量,甚至在非高峰时段。

也许更重要的是,团队希望看到乘客量模式中明显的统计变化在哪里。为此,他们使用了 Minitab 的预测分析模块中的 MARS 回归,将数据分成可以观察到明显模式变化的段。以下是他们周三的数据:

这个单预测变量的偏依赖图增加了有趣的背景信息;虽然乘客量最大的时间是在上午 8:20 到 9:00 之间,但乘客量模式的最大变化发生在上午 7:40。并且,使用 MARS,团队只需点击 “预测” 按钮即可获得每周每天的未来预测。

那么,有什么应用呢?

如果没有这些数据,大多数交通组织会主张在高峰时段增加一列火车,可能在上午 8:30 或 8:40 左右。但是,从更精细的层面来看,交通系统通过在上午 8:00 左右而不是在高峰时段稍晚的时候增加更多火车,将获得更好的减少过度拥挤的效果。

希望有了这些数据的支持,交通系统不需要两次重新制定时刻表,并且他们可以更明智地使用有限的资源。这个步骤可以在乘客量超过允许阈值的所有日子里重复进行,以找到增加一列额外火车将产生最大影响的时间。

团队还推测,首先解决这个问题可能会自然地解决一些其他问题,如车站过度拥挤、座位不足和清洁问题。

最终,结果将是让乘客变得快乐。这是一件好事 —— 更快乐的乘客不太可能寻找其他方式去上班、上学或休闲。

以数据为驱动解决公共交通问题

公共交通至关重要,原因有很多,包括其对环境的积极影响、为乘客带来的经济效益、减少所有人的交通拥堵以及促进社会公平。当这些系统遇到问题时,不仅会对乘客产生负面影响,还会对依赖可靠交通的整个城市生态系统产生负面影响。

Minitab 可以通过提供强大的数据分析工具来帮助公共交通系统更高效、可靠和安全地运行,以识别和纠正问题或主动解决问题。通过利用 Minitab 的功能,交通管理部门可以优化路线、改进维护计划并提高整体服务质量,确保为所有乘客提供更顺畅、更可靠的体验。

这篇关于地铁通勤,拥挤之痛:你有同感吗?如何通过数据优化公共交通拥挤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108504

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1