大数据技术之Flume 拓扑结构(4)

2024-08-26 07:44

本文主要是介绍大数据技术之Flume 拓扑结构(4),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Flume 拓扑结构

 简单串联 (Simple Serial)

 复制和多路复用 (Replication and Multiplexing)

 负载均衡和故障转移 (Load Balancing and Failover)

 聚合 (Aggregation)

示例配置


Flume 拓扑结构

Flume 支持多种拓扑结构来满足不同的数据收集和传输需求。以下是 Flume 中常见的几种拓扑结构:

 简单串联 (Simple Serial)

  • 描述: 这种模式是将多个 Flume Agent 顺序连接起来,从最初的 Source 开始到最终的 Sink 传送至目的存储系统。
  • 特点:
    • 适用于简单的数据流管道。
    • 不建议桥接过多的 Flume Agent,因为数量过多可能会影响传输速率。
    • 一旦传输过程中某个节点 Flume Agent 宕机,可能会影响整个传输系统。

 复制和多路复用 (Replication and Multiplexing)

 

  • 描述: Flume 支持将事件流向一个或多个目的地。这种模式可以将相同数据复制到多个 Channel 中,或者将不同数据分发到不同的 Channel 中,Sink 可以选择传送到不同的目的地。
  • 特点:
    • 复制: 将同一个事件复制并发送到多个 Channel 或 Sink。
    • 多路复用: 根据预定义的规则,将不同的事件发送到不同的 Channel 或 Sink。
    • 这种结构增加了数据的灵活性和可扩展性。 

 负载均衡和故障转移 (Load Balancing and Failover)

 

  • 描述: Flume 支持使用将多个 Sink 逻辑上分到一个 Sink 组,Sink 组配合不同的 SinkProcessor 可以实现负载均衡和错误恢复的功能。
  • 特点:
    • 负载均衡: 在多个 Sink 之间分配负载,提高系统的吞吐量。
    • 故障转移: 当主 Sink 失败时,自动切换到备选 Sink。 

 聚合 (Aggregation)

 

  • 描述: 这种模式是我们最常见的,也非常实用,尤其是在日常 Web 应用中。Web 应用通常分布在上百个服务器,甚至上千个、上万个服务器。产生的日志,处理起来非常麻烦。使用 Flume 的这种组合方式能很好地解决这一问题。
  • 特点:
    • 每台服务器部署一个 Flume Agent 采集日志。
    • 将这些日志传送到一个集中收集日志的 Flume Agent。
    • 由该集中 Flume Agent 上传到 HDFS、Hive、HBase 等存储系统进行日志分析。
    • 适用于需要从多个数据源收集数据的情况。
    • 提高了数据收集的效率和可靠性。

示例配置

这里提供一个简单的串联拓扑结构的配置示例:

# 定义一个名为 a1 的 Agent
a1.sources = <Source1> <Source2>
a1.channels = <Sink1> <Sink2>
a1.sinks = <Channel1> <Channel2># 将 Source、Channel 和 Sink 配置到一起
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100a1.sinks.k1.type = logger# 连接 Source、Channel 和 Sink
a1.sources.r1.channels = <Channel1>
a1.sinks.k1.channel = <Channel2>

在这个例子中,我们定义了一个 Agent (a1),它有一个 Source (r1)、一个 Channel (c1) 和一个 Sink (k1)。Source (r1) 用来接收网络数据,Channel (c1) 用作中间存储,而 Sink (k1) 用于日志输出。

这篇关于大数据技术之Flume 拓扑结构(4)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107966

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X