DataWhale AI夏令营 2024大运河杯-数据开发应用创新赛

2024-08-26 07:36

本文主要是介绍DataWhale AI夏令营 2024大运河杯-数据开发应用创新赛,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DataWhale AI夏令营 2024大运河杯-数据开发应用创新赛

  • baseline分析
    • 构建YOLO数据集
    • 开始训练
  • 优化思路

话不多说直接开始

baseline分析

这里我们忽略数据、模型下载的单元格
导入数据处理的一些包

import os, sys
import cv2, glob, json
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

读取下载的数据,并查看一下json的格式。

train_anno = json.load(open('训练集(有标注第一批)/标注/45.json', encoding='utf-8'))
train_anno[0], len(train_anno)

用pandas读取数据查看数据格式

pd.read_json('训练集(有标注第一批)/标注/45.json')

读取视频,使用VideoCapture对数据进行切帧处理。

video_path = '训练集(有标注第一批)/视频/45.mp4'
cap = cv2.VideoCapture(video_path)
while True:# 读取下一帧ret, frame = cap.read()if not ret:breakbreak  

根据json的信息,展示一张画框的图片

bbox = [746, 494, 988, 786]pt1 = (bbox[0], bbox[1])
pt2 = (bbox[2], bbox[3])color = (0, 255, 0) 
thickness = 2  # 线条粗细cv2.rectangle(frame, pt1, pt2, color, thickness)frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
plt.imshow(frame)

截止到这里,上面其实都可以忽略,上面就是让大家看一下原始数据这个格式是什么样,大概该怎么处理这个数据。接下来开始构建YOLO所需的数据集。

构建YOLO数据集

yolo数据集的格式为一个data文件夹下包含三个内容,train; val; yolo.yaml,其中train和val不在介绍,yolo.yaml主要包含数据涉及到的标签信息。
我这里是吧数据放在/root/data文件夹下了,因为切帧的图片数据很多需要的空间后的云的系统盘空间不够。大家可以参考。

if not os.path.exists('/root/data/yolo-dataset/'):os.mkdir('/root/data/yolo-dataset/')
if not os.path.exists('/root/data/yolo-dataset/train'):os.mkdir('/root/data/yolo-dataset/train')
if not os.path.exists('/root/data/yolo-dataset/val'):os.mkdir('/root/data/yolo-dataset/val')dir_path = os.path.abspath('./') + '/'# 需要按照你的修改path
with open('/root/data/yolo-dataset/yolo.yaml', 'w', encoding='utf-8') as up:up.write(f'''
path: /root/data/yolo-dataset/
train: train/
val: val/names:0: 非机动车违停1: 机动车违停2: 垃圾桶满溢3: 违法经营
''')

对获取的文件路径进行排序,以确保标注文件和视频文件按照相同顺序匹配。

train_annos = glob.glob('训练集(有标注第一批)/标注/*.json')
train_videos = glob.glob('训练集(有标注第一批)/视频/*.mp4')
train_annos.sort(); train_videos.sort();category_labels = ["非机动车违停", "机动车违停", "垃圾桶满溢", "违法经营"]

我这里按照8:2划分训练集和验证集,一共应该是52组数据,划分之后是42:10
下面在代码中给出了逐行的注释,大家自行食用即可。

for anno_path, video_path in zip(train_annos[:42], train_videos[:42]):print(video_path)# 使用Pandas读取JSON格式的标注文件,返回一个DataFrame对象anno_df = pd.read_json(anno_path)   # 使用OpenCV打开视频文件,准备逐帧读取cap = cv2.VideoCapture(video_path)frame_idx = 0 # 读取视频帧while True:ret, frame = cap.read()if not ret:break# 获取当前帧的高度和宽度img_height, img_width = frame.shape[:2]# 从标注文件中提取当前帧的标注信息frame_anno = anno_df[anno_df['frame_id'] == frame_idx]# 将当前帧保存为JPEG图像文件cv2.imwrite('/root/data/yolo-dataset/train/' + anno_path.split('/')[-1][:-5] + '_' + str(frame_idx) + '.jpg', frame)# 检查当前帧有没有标注信息if len(frame_anno) != 0:# 创建并打开一个与当前帧图像同名的文本文件,准备写入YOLO格式的标签with open('/root/data/yolo-dataset/train/' + anno_path.split('/')[-1][:-5] + '_' + str(frame_idx) + '.txt', 'w') as up:for category, bbox in zip(frame_anno['category'].values, frame_anno['bbox'].values):# 获取当前标注对象类别的索引category_idx = category_labels.index(category)# 获取框的坐标x_min, y_min, x_max, y_max = bbox# 计算标注框的中心点横纵坐标,并归一化到 [0, 1] 之间x_center = (x_min + x_max) / 2 / img_widthy_center = (y_min + y_max) / 2 / img_height# 计算框的宽和高,并归一化width = (x_max - x_min) / img_widthheight = (y_max - y_min) / img_heightif x_center > 1:print(bbox)# 将YOLO格式的标注信息写入标签文件up.write(f'{category_idx} {x_center} {y_center} {width} {height}\n')# 处理下一帧frame_idx += 1

构建验证集,这部分代码直接看上一个即可一样的基本都是

for anno_path, video_path in zip(train_annos[-10:], train_videos[-10:]):print(video_path)anno_df = pd.read_json(anno_path)cap = cv2.VideoCapture(video_path)frame_idx = 0 while True:ret, frame = cap.read()if not ret:breakimg_height, img_width = frame.shape[:2]frame_anno = anno_df[anno_df['frame_id'] == frame_idx]cv2.imwrite('/root/data/yolo-dataset/val/' + anno_path.split('/')[-1][:-5] + '_' + str(frame_idx) + '.jpg', frame)if len(frame_anno) != 0:with open('/root/data/yolo-dataset/val/' + anno_path.split('/')[-1][:-5] + '_' + str(frame_idx) + '.txt', 'w') as up:for category, bbox in zip(frame_anno['category'].values, frame_anno['bbox'].values):category_idx = category_labels.index(category)x_min, y_min, x_max, y_max = bboxx_center = (x_min + x_max) / 2 / img_widthy_center = (y_min + y_max) / 2 / img_heightwidth = (x_max - x_min) / img_widthheight = (y_max - y_min) / img_heightup.write(f'{category_idx} {x_center} {y_center} {width} {height}\n')frame_idx += 1

开始训练

baseline使用的是yolov8n进行训练,在这里epoch代表训练的轮数,imgsz代表输入模型图像大小,batch代表一次梯度更新使用多少张图片

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"import warnings
warnings.filterwarnings('ignore')from ultralytics import YOLO
model = YOLO("yolov8n.pt")
results = model.train(data="/root/data/yolo-dataset/yolo.yaml", epochs=15, imgsz=1080, batch=16)

创建结果目录

category_labels = ["非机动车违停", "机动车违停", "垃圾桶满溢", "违法经营"]if not os.path.exists('result/'):os.mkdir('result')

对测试集视频文件的处理,通过预训练的YOLO模型对每个视频的每一帧进行检测,并将检测结果保存为JSON格式的文件。

from ultralytics import YOLO
# 使用训练好的模型进行预测
model = YOLO("runs/detect/train/weights/best.pt")
import globfor path in glob.glob('测试集/*.mp4'):# 保存结果生成的json文件submit_json = []# 对视频文件进行推理,conf=0.05设置了最低置信度阈值results = model(path, conf=0.05, imgsz=1080,  verbose=False)for idx, result in enumerate(results):boxes = result.boxes  # Boxes object for bounding box outputsmasks = result.masks  # Masks object for segmentation masks outputskeypoints = result.keypoints  # Keypoints object for pose outputsprobs = result.probs  # Probs object for classification outputsobb = result.obb  # Oriented boxes object for OBB outputsif len(boxes.cls) == 0:continue# 获取检测框的坐标、类别、置信度xywh = boxes.xyxy.data.cpu().numpy().round()cls = boxes.cls.data.cpu().numpy().round()conf = boxes.conf.data.cpu().numpy()# 写入submitfor i, (ci, xy, confi) in enumerate(zip(cls, xywh, conf)):submit_json.append({'frame_id': idx,'event_id': i+1,'category': category_labels[int(ci)],'bbox': list([int(x) for x in xy]),"confidence": float(confi)})# 保存json文件with open('./result/' + path.split('/')[-1][:-4] + '.json', 'w', encoding='utf-8') as up:json.dump(submit_json, up, indent=4, ensure_ascii=False)

优化思路

这篇关于DataWhale AI夏令营 2024大运河杯-数据开发应用创新赛的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107941

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加