本文主要是介绍【高数】三角函数积累,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1.两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
2.倍角公式
tan2A = 2tanA/(1-tan² A)
Sin2A=2SinA•CosA
Cos2A = Cos^2 A--Sin² A
=2Cos² A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)³;
cos3A = 4(cosA)³ -3cosA
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
3.半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
4.和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
5.积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
6.诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
7.万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
8.其它公式
a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a]
a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]²;
1-sin(a) = [sin(a/2)-cos(a/2)]²;
9.其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
√表示根号,包括{……}中的内容
10.三角函数知识点汇总
1.特殊角的三角函数值:
2.角度制与弧度制的互化:
3.弧长及扇形面积公式
弧长公式: 扇形面积公式:
----是圆心角且为弧度制。 r-----是扇形半径
4.任意角的三角函数
设是一个任意角,它的终边上一点p(x,y),
(1)正弦 余弦 正切
(2)各象限的符号:
5.同角三角函数的基本关系:
(1)平方关系:
(2)商数关系:
6.诱导公式:记忆口诀:把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。
口诀:函数名称不变,符号看象限.
8、三角函数公式:
两角和与差的三角函数关系
倍角公式
降幂公式:
升幂公式:
这篇关于【高数】三角函数积累的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!