本文主要是介绍积累程度 poj3585,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
有一个树形的水系,由 N-1 条河道和 N 个交叉点组成。
我们可以把交叉点看作树中的节点,编号为 1~N,河道则看作树中的无向边。
每条河道都有一个容量,连接 x 与 y 的河道的容量记为 c(x,y)。
河道中单位时间流过的水量不能超过河道的容量。
有一个节点是整个水系的发源地,可以源源不断地流出水,我们称之为源点。
除了源点之外,树中所有度数为 1 的节点都是入海口,可以吸收无限多的水,我们称之为汇点。
也就是说,水系中的水从源点出发,沿着每条河道,最终流向各个汇点。
在整个水系稳定时,每条河道中的水都以单位时间固定的水量流向固定的方向。
除源点和汇点之外,其余各点不贮存水,也就是流入该点的河道水量之和等于从该点流出的河道水量之和。
整个水系的流量就定义为源点单位时间发出的水量。
在流量不超过河道容量的前提下,求哪个点作为源点时,整个水系的流量最大,输出这个最大值。
输入格式
输入第一行包含整数T,表示共有T组测试数据。
每组测试数据,第一行包含整数N。
接下来N-1行,每行包含三个整数x,y,z,表示x,y之间存在河道,且河道容量为z。
节点编号从1开始。
输出格式
每组数据输出一个结果,每个结果占一行。
数据保证结果不超过231−1231−1。
数据范围
N≤2∗105N≤2∗105
输入样例:
1
5
1 2 11
1 4 13
3 4 5
4 5 10
输出样例:
26
最重要的数组要开大我开3e+测试的时候超时卡了一上午没看出来(忘了考虑存的是无向图),我想应该是数组模拟的邻接表在存数据的时候计数变量超了,如果是用结构体的话应该就可以开2e+。 这就是 二次扫描+换根法的典型题。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
typedef long long ll;using namespace std;
const int N=700100;
ll Head[N],edge[N],Next[N],dp[N],d[N],tot=0,point[N],du[N];
int n;
bool v[N];
inline void adds(int x,int y,int z)
{tot++;point[tot]=y;Next[tot]=Head[x];Head[x]=tot;edge[tot]=z;
}void dfsd(int x)
{v[x]=1;d[x]=0;for(int i=Head[x]; i; i=Next[i]){int y=point[i];if(v[y])continue;dfsd(y);if(du[y]==1)d[x]+=edge[i];elsed[x]+=min(edge[i],d[y]);}
}void dfs(int x)
{v[x]=1;for(int i=Head[x]; i; i=Next[i]){int y=point[i];if(v[y])continue;if(du[x]==1)dp[y]=edge[i]+d[y];else{dp[y]=d[y]+min(dp[x]-min(d[y],edge[i]),edge[i]);}dfs(y);}
}int main()
{int jb;scanf("%d",&jb);while(jb--){tot=0;memset(Next,0,sizeof(Next));memset(Head,0,sizeof(Head));memset(du,0,sizeof(du));cin>>n;for(int i=1; i<n; i++){int x,y,z;scanf("%d%d%d",&x,&y,&z);adds(x,y,z);adds(y,x,z);du[x]++,du[y]++;}int root=1;memset(v,0,sizeof(v));dfsd(root);dp[root]=d[root];memset(v,0,sizeof(v));dfs(root);ll ans=-1;for(int i=1; i<=n; i++){ans=max(ans,dp[i]);//cout<<dp[i]<<' '<<d[i]<<endl;}printf("%lld\n",ans);}
}
这篇关于积累程度 poj3585的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!