LlamaIndex 实现 RAG(三)- 向量数据

2024-08-26 01:52

本文主要是介绍LlamaIndex 实现 RAG(三)- 向量数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RAG 中使用向量存储知识和文档数据,召回时通过语意进行搜索。文档转为向量是个非常消耗时的操作,不同 Embedding Model 参数不同,结果维度也不同,消耗的算力也不同。所以通常的做法都会在索引阶段(Embedding)把向量保存到向量数据库中,在召回阶段,向量数据库会根据选择的算法计算向量相似度,最终将分数高的数据进行返回。本文将介绍向量数据库的使用方法,包括以下几部分

  1. 什么是 Embedding Model?
  2. 向量数据库的使用,包括 Chroma 和 PGVector
  3. 向量文档的管理,文档更新

什么是Embedding Model

嵌入模型用于通过复杂的数值来表示文档,嵌入模型将文本作为输入,并返回一个向量,向量用于捕捉文本的语义。这些嵌入模型经过训练,能够以向量方式表示文本,并帮助实现语音搜索。从高层次来看,如果用户提出一个关于狗的问题,那么该问题的向量与讨论狗的文本的向量将非常相似。在计算向量之间的相似度时,有许多方法可以使用(点积、余弦相似度等)。默认情况下,LlamaIndex在比较嵌入时使用余弦相似度。

相似度算法

向量相似度算法主要包括三种,欧式距离(L2)、夹角余弦(Cosine)、内积(IP),向量数据库创建集合时,可以指定相似度算法,

欧式距离:点与点(矩阵与矩阵)之间的直线距离,越小相似度越高。
在这里插入图片描述

夹角余弦:向量之间的夹角,1 重合,-1 完全相反,0 为向量垂直,1 相似度最高。

在这里插入图片描述

向量内积:向量内积,越大相似度越高

在这里插入图片描述

嵌入模型的选择

嵌入模型选择要从多方面考虑,参数、维度,可以在 HuggingFace 上查看 Embedding排名,选择语言,这里我们选择中文模型,可以看到 Qwen 系列排名都很靠前。在本文的案例中,使用的嵌入模型是 nomic-embed-text,维度 768,效果没有 Qwen 的好,模型相对较小,运行速度比较快,在 RAG 评估阶段,可以根据效果进行嵌入模型的替换。

在这里插入图片描述

集成向量数据库

使用 LlamaIndex 接入向量数据,下面将分别使用代码分别接入 Chroma 和 PGVector。

Chroma

Chroma 是一个开源向量数据库,提供的功能包括向量的存储以及搜索,文档存储,全文本搜索,元数据过滤,多模态等等。安装 Chroma 依赖。

pip install chromadb
pip install  llama-index-vector-stores-chroma

实现 Chroma 向量数据库,包括两个方法,对文档做索引和查询索引,要确保 LlamaIndex 和 Chroma 使用同样的嵌入模型


def get_chroma_storage():chroma_client = chromadb.PersistentClient(path="./chroma_db")chroma_collection = chroma_client.get_or_create_collection("quickstart", embedding_function= embedding_functions.OllamaEmbeddingFunction(model_name="nomic-embed-text",url="http://10.91.3.116:11434"),metadata={"hnsw:space": "cosine"})vector_store = ChromaVectorStore(chroma_collection=chroma_collection)return vector_storedef index_doc_chroma():storage_context = StorageContext.from_defaults(vector_store=get_chroma_storage())# 读取 "./data" 目录中的数据并加载为文档对象documents = SimpleDirectoryReader("./data").load_data()# 从文档中创建 VectorStoreIndex,并使用 OllamaEmbedding 作为嵌入模型vector_index = VectorStoreIndex.from_documents(documents, embed_model=ollama_embedding, storage_context=storage_context,transformations=[SentenceSplitter(chunk_size=1000, chunk_overlap=20)],)return vector_indexdef get_doc_index_chroma():'''解析 PDF 并保存到 Chroma'''# 从文档中创建 VectorStoreIndex,并使用 OllamaEmbedding 作为嵌入模型vector_index = VectorStoreIndex.from_vector_store(get_chroma_storage(), embed_model=ollama_embedding)return vector_index
PGVector

PGVector 是 Postgres 数据库 Vector 扩展,本文使用的是 PGVector.rs,是 PGVector 的 Rust 版本,性能比 PGVector 要好。首先安装 PGVector 依赖

pip install llama-index-vector-stores-pgvecto-rs
pip install pgvecto_rs[sdk]

启动 PG Docker,Docker 镜像最近都不好用了,找到了一个可以用的镜像地址,需要的朋友请查看镜像文档

docker run --name pgvecto-rs-demo -e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -d tensorchord/pgvecto-rs:pg16-v0.0.0-nightly.20240823

实现 PGVector Store 并索引文档


def get_pg_storage():vector_store = PGVectoRsStore(client=client)return vector_storedef index_doc_pg():storage_context = StorageContext.from_defaults(vector_store=get_pg_storage())# 读取 "./data" 目录中的数据并加载为文档对象documents = SimpleDirectoryReader("./data").load_data()# 从文档中创建 VectorStoreIndex,并使用 OllamaEmbedding 作为嵌入模型vector_index = VectorStoreIndex.from_documents(documents, embed_model=ollama_embedding, storage_context=storage_context,transformations=[SentenceSplitter(chunk_size=1000, chunk_overlap=20)],)return vector_index

PG 最大好处就是可以 SQL 操作

在这里插入图片描述

文档的管理

本地的知识库通常需要定期更新,例如文档内容的变更,文档管理主要是要处理更新和删除,文档的更新可能会更新文档的多个地方,很难做到细粒度的追踪到每个分块的更新。所以对于文档的更新,我们就是使用删除再插入的方式。如果文档变更了,我们先删除之前的,在插入更新的,问题就变为我们只要能够找到之前文档进行删除即可,在 LlamaIndex 中文档可以通过 ID 删除文档。

在 LlamaIndex 中每个 Vector Store 都有对应的一个 delete 方法,调用 delete 方式需要出入一个 doc_id,下面这个截图来自 pg_vector。
在这里插入图片描述
那么这个 Id 从哪里来的,这个 Id 是在创建 Document 时生成的,下图来自 SimpleDocumentStore,红框内就是 DocId。
在这里插入图片描述
所以,有了这些数据,自己就可以很容易的实现一个文档管理系统。

  1. 首先保存文档创建时的数据,尽量不用SimpleDocumentStore,使用关系数据库保存,易于查询,文件保存在对象存储上。
  2. 删除时,根据文件路径找到对应的 Id,这里要保证路径的唯一性。
  3. 对新的文档进行索引,并保存到数据库中。

总结

本文介绍了LlamaIndex 中向量数据库的使用,向量数据库产品很多,至少有几十个。其实向量数据没有那么复杂,简单来说,就是向量的存储加查询,查询是通过上面所说的相似度算法,最后根据得分排序。由于计算量比较大,现在很多向量数据库厂商使用了云资源,其实向量最好能用能用现有的数据库,这样就不用新引入组件,比如手 PGVec、Mongo 等等。

最后,在项目中,还是要根据具体情况进行选型,要看你的项目的现有存储架构,对于性能要求高的可以考虑使用 Redis,Redis 是支持向量查询的,而且性能也不错。

这篇关于LlamaIndex 实现 RAG(三)- 向量数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107215

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英