本文主要是介绍动手学深度学习(pytorch)学习记录15-正则化、权重衰减[学习记录],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
我们可以通过收集更多的训练数据来缓解过拟合,但这可能成本很高,耗时很多或完全失去控制,在短期内难以做到。 假设已经有了足够多的数据,接下来将重点放在正则化技术上。
权重衰减是使用最广泛的正则化技术之一,它通常也被称为L2正则化
技术方法:通过函数与零之间的距离来度量函数的复杂度;
如何精确测量这种‘距离’?
一个简单的方法是通过线性函数f(x)=w^(T) x 中权重向量的某个范数(如||w||^2)来度量复杂度
最常用的方法是将范数作为惩罚项添加到最小化损失中。
那么原来的训练目标“最小化训练标签上的预测损失”调整为“最小化训练标签上的预测损失+惩罚项”
如果权重向量增长过大,学习算法可能会更集中于最小化权重范数。
在线性回归损失是:
在损失函数中添加范数后:
通过正则化常数λ(非负超参数)来权衡这个额外的惩罚。这里除以2,当取一个2次函数的倒数时,2和1/2会抵消让更新表达式简单美观
用简单的例子实现权重衰减
由于沐神的d2l包太好用了,部分函数就直接调用包里的,使代码更简洁
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
用下面的公式生成数据
标签是线性函数,被噪声破坏,为了突出过拟合,增加线性回归维度为200,但只提供包含20个样本的数据集训练。
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
定义一个函数来随机初始化模型参数
def init_params():w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)b = torch.zeros(1, requires_grad=True)return [w, b]
定义L2范数惩罚
实现惩罚的方法-对所有项求平方后再将他们求和。
def l2_penalty(w):return torch.sum(w.pow(2)) / 2
定义训练代码
def train(lambd):w, b = init_params()net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_lossnum_epochs, lr = 100, 0.003animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',xlim=[5, num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:# 增加了L2范数惩罚项,# 广播机制使l2_penalty(w)成为一个长度为batch_size的向量l = loss(net(X), y) + lambd * l2_penalty(w)l.sum().backward()d2l.sgd([w, b], lr, batch_size)if (epoch + 1) % 5 == 0:animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数是:', torch.norm(w).item())
忽略正则化直接训练的
用lambd = 0禁用权重衰减后运行这个代码。 注意,这里训练误差有了减少,但测试误差没有减少, 这意味着出现了严重的过拟合。
train(lambd=0)
使用正则化
train(lambd=3)
通过pytorch框架简洁实现
def train_concise(wd):net = nn.Sequential(nn.Linear(num_inputs, 1))for param in net.parameters():param.data.normal_()loss = nn.MSELoss(reduction='none')num_epochs, lr = 100, 0.003# 偏置参数没有衰减trainer = torch.optim.SGD([{"params":net[0].weight,'weight_decay': wd},{"params":net[0].bias}], lr=lr)animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',xlim=[5, num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:trainer.zero_grad()l = loss(net(X), y)l.mean().backward()trainer.step()if (epoch + 1) % 5 == 0:animator.add(epoch + 1,(d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)
train_concise(3)
封面图片来源
欢迎点击我的主页查看更多文章。
本人学习地址https://zh-v2.d2l.ai/
恳请大佬批评指正。
这篇关于动手学深度学习(pytorch)学习记录15-正则化、权重衰减[学习记录]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!