超分中的GAN总结:常用的判别器类型和GAN loss类型

2024-08-25 08:28

本文主要是介绍超分中的GAN总结:常用的判别器类型和GAN loss类型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 概述

在真实数据超分任务上,从SRGAN开始,Loss函数基本是Pixel loss + GAN loss + Perceptual loss的组合。

与生成任务不同,对于超分这种复原任务,如果只使用Gan loss或者GAN loss的权重比较大的话,效果就比较差。

SRGAN成功的两个关键点:1. 引入了感知损失函数(Perceptual Loss),它是让生成图像产生细节的关键,而不是对抗损失函数。2. 将对抗损失函数的权重调小,让它不能影响训练的方向,只会微调生成图像的清晰度,消除感知损失函数带来的噪声。参见底层视觉之美。

在实践中,一般gan loss的权重设置为Pixel loss的千分之一。

2. 超分中的判别器

判别器一般来说有三种:

  • 分类网络 vgg,resnet等
    最后一层输出输出一个数字,代表整张图的判别结果
  • Patch gan
    最后一层不再输出一个数字,而是输出1xnxn的特征图,其中的每一个数字代表了原图中一个patch的判别结果;最后的loss通过对这nxn个点求均值得到;
  • U-Net discriminator with spectral normalization (SN).
    在Real ESRGAN中提出的,因为unet的输入分辨率和输出分辨率一致,相当于unet判别器对每个像素进行了判别,最后的loss求均值得到;引入spectral normalization 是为了稳定训练,同时可以消除一些artifacts;

3. 超分中的几种 Gan loss

3.1 Vanilla GAN

最原始的gan loss,判别器做的是二分类任务,判别器的最后输出经过sigmoid后计算交叉熵;一般用
self.loss = nn.BCEWithLogitsLoss()实现,其相当于sigmoid + 交叉熵;

3.2 LSGAN (最小平方gan)

不去算sigmoid和交叉熵,而是直接算判别器预测输出与真实标签值的MSE;一般用self.loss = nn.MSELoss()

3.3 WGAN loss

WGAN是对原始的GAN的改进,优化了其会发生梯度消失训练不稳定的问题,原始的GAN最小化生成器loss等价于最小化真实分布P_r与生成分布P_g之间的JS散度 → WGAN最小化真实分布P_r与生成分布P_g之间的Wasserstein距离;
具体来说,WGAN去掉了sigmoid, 同时也不再计算交叉熵,而是直接返回D(x)的均值。因为一般来说,都是最小化loss,对于真实样本直接输出-input.mean();对于生成样本,如果是优化生成器的时候,wgan loss为-input.mean(),如果是优化判别器,则输出input.mean();代码如下;

def wgan_loss(input, target):# target is booleanreturn -1 * input.mean() if target else input.mean()

3.4 RAGAN (相对Gan)

衡量的是真实数据比生成数据真实的概率,也就是说原始的GAN是将判别器的输出直接计算loss,而RAGAN会先计算真实样本的判别器输出和生成样本的判别器输出,做差值后再进行loss计算;比如生成器loss如下:
D_loss = self.D_lossfn_weight * (
self.D_lossfn(pred_d_real - torch.mean(pred_g_fake, 0, True), False) +
self.D_lossfn(pred_g_fake - torch.mean(pred_d_real, 0, True), True)) / 2

3.5 代码(来自KAIR)

  • Loss函数定义代码
    class GANLoss(nn.Module):def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0):super(GANLoss, self).__init__()self.gan_type = gan_type.lower()self.real_label_val = real_label_valself.fake_label_val = fake_label_val# 原始gan和ragan都是二分类if self.gan_type == 'gan' or self.gan_type == 'ragan':self.loss = nn.BCEWithLogitsLoss()elif self.gan_type == 'lsgan':self.loss = nn.MSELoss()elif self.gan_type == 'wgan':def wgan_loss(input, target):# target is booleanreturn -1 * input.mean() if target else input.mean()self.loss = wgan_losselif self.gan_type == 'softplusgan':def softplusgan_loss(input, target):# target is booleanreturn F.softplus(-input).mean() if target else F.softplus(input).mean()self.loss = softplusgan_losselse:raise NotImplementedError('GAN type [{:s}] is not found'.format(self.gan_type))def get_target_label(self, input, target_is_real):if self.gan_type in ['wgan', 'softplusgan']:return target_is_real# 返回标签,如果target_is_real为true,则返回全1的标签;如果为false则返回全0的标签if target_is_real:return torch.empty_like(input).fill_(self.real_label_val)else:return torch.empty_like(input).fill_(self.fake_label_val)def forward(self, input, target_is_real):target_label = self.get_target_label(input, target_is_real)loss = self.loss(input, target_label)return loss```
    
  • 判别器Loss计算代码
    if self.opt_train['gan_type'] in ['gan', 'lsgan', 'wgan', 'softplusgan']:# realpred_d_real = self.netD(self.H)                # 1) real datal_d_real = self.D_lossfn(pred_d_real, True)l_d_real.backward()# fakepred_d_fake = self.netD(self.E.detach().clone()) # 2) fake data, detach to avoid BP to Gl_d_fake = self.D_lossfn(pred_d_fake, False)l_d_fake.backward()
    elif self.opt_train['gan_type'] == 'ragan':# realpred_d_fake = self.netD(self.E).detach()       # 1) fake data, detach to avoid BP to Gpred_d_real = self.netD(self.H)                # 2) real datal_d_real = 0.5 * self.D_lossfn(pred_d_real - torch.mean(pred_d_fake, 0, True), True)l_d_real.backward()# fakepred_d_fake = self.netD(self.E.detach())l_d_fake = 0.5 * self.D_lossfn(pred_d_fake - torch.mean(pred_d_real.detach(), 0, True), False)l_d_fake.backward()```
    
  • 生成器loss计算代码
    if self.opt['train']['gan_type'] in ['gan', 'lsgan', 'wgan', 'softplusgan']:pred_g_fake = self.netD(self.E)D_loss = self.D_lossfn_weight * self.D_lossfn(pred_g_fake, True)
    elif self.opt['train']['gan_type'] == 'ragan':pred_d_real = self.netD(self.H).detach()pred_g_fake = self.netD(self.E)# 相对判别器D_loss = self.D_lossfn_weight * (self.D_lossfn(pred_d_real - torch.mean(pred_g_fake, 0, True), False) +self.D_lossfn(pred_g_fake - torch.mean(pred_d_real, 0, True), True)) / 2
    

这篇关于超分中的GAN总结:常用的判别器类型和GAN loss类型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105037

相关文章

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用