机器学习实战(k-近邻算法)

2024-08-25 07:58

本文主要是介绍机器学习实战(k-近邻算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签。简称kNN。通常k是不大于20的整数,这里的距离一般是欧式距离。

K最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
下面是机器学习实战书中一些代码的实现:

其中包含使用k-邻近算法改进约会网站配对效果代码和手写识别系统的代码:

#coding=UTF8 
from numpy import *
import matplotlib
import matplotlib.pyplot as plt
import operator
from os import listdirdef createDataSet():group = array([[3,104],[2,100],[1,81],[101,10],[99,5]]) #训练集labels = ['affectional film','affectional film','affectional film','action movie',"action movie"]return group,labelsdef classify0(inX,dataSet,labels,k):dataSetSize = dataSet.shape[0]diffMat = tile(inX, (dataSetSize,1)) - dataSetsqDiffMat = diffMat ** 2; #diffMat ^ 2sqDistances = sqDiffMat.sum(axis=1) #将矩阵的每一行相加比如[[2,1,3],[1,1,1]]结果为[6,3]distances = sqDistances ** 0.5 #sqDistances ^ (1/2)sortedDistIndicies = distances.argsort()classCount = {}for i in range(k):voteIlabel = labels[sortedDistIndicies[i]]classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)   #获取对象的第1个域的值return sortedClassCount[0][0]def file2matrix(filename):fr = open(filename)numberOfLines = len(fr.readlines())         #get the number of lines in the filereturnMat = zeros((numberOfLines,3))        #prepare matrix to returnclassLabelVector = []                       #prepare labels return   fr = open(filename)index = 0for line in fr.readlines():line = line.strip()listFromLine = line.split('\t')returnMat[index,:] = listFromLine[0:3]classLabelVector.append(int(listFromLine[-1]))index += 1return returnMat,classLabelVectordef autoNorm(dataSet):minVals = dataSet.min(0) #参数0从当前列选取最小值maxVals = dataSet.max(0) #同上ranges = maxVals - minValsnormDataSet = zeros(shape(dataSet)) #创建规模为dataSet的零矩阵m = dataSet.shape[0] #行normDataSet = dataSet - tile(minVals, (m,1)) #m行1列的minValsnormDataSet = normDataSet / tile(ranges, (m,1))return normDataSet,ranges,minValsdef datingClassTest():hoRatio = 0.10datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')normMat,ranges,minVals = autoNorm(datingDataMat)m = normMat.shape[0] #行numTestVecs = int(m * hoRatio) #算出测试数据errorCount = 0.0for i in range(numTestVecs):classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:], datingLabels[numTestVecs:m], 3) #@param1:读入每行的数据,@param2:样本数据,因为测试数据是0-numTestVecsprint "the classifier came back with: %d,the real answer is : %d" % (classifierResult,datingLabels[i])if(classifierResult != datingLabels[i]):errorCount += 1.0print "the total error rate is: %f" % (errorCount / float(numTestVecs))def classifyPerson():percentTats = float(raw_input("输入玩视频游戏所消耗时间的百分比:"))ffMiles = float(raw_input("输入每年获得的飞行常客里程数:"))iceCream = float(raw_input("输入每周消费的冰淇淋公升数:"))datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')normMat,ranges,minVals = autoNorm(datingDataMat)inArr = array([ffMiles,percentTats,iceCream])classifierResult = classify0((inArr-minVals)/ranges, normMat ,datingLabels , 3)print(classifierResult)temp = classifierResult - 1;if temp == 0:print("一点都不喜欢这个人")elif temp == 1:print("一般般")else:print("非常喜欢")def img2vector(filename):returnVect = zeros((1,1024))fr = open(filename)for i in range(32):lineStr = fr.readline()for j in range(32):returnVect[0,32*i+j] = int(lineStr[j])return returnVect #returnVect为1*1024的数组def handwritingClassTest():hwLabels = []trainingFileList = listdir("trainingDigits")m = len(trainingFileList)trainingMat = zeros((m,1024))for i in range(m):  #这是训练集fileNameStr = trainingFileList[i]fileStr = fileNameStr.split('.')[0]classNumStr = int(fileStr.split('_')[0])hwLabels.append(classNumStr)trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)testFileList = listdir('testDigits')errorCount = 0.0mTest = len(testFileList)for i in range(mTest):  #这是测试集fileNameStr = testFileList[i]fileStr = fileNameStr.split('.')[0]classNumStr = int(fileStr.split('_')[0])vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)classifierResult = classify0(vectorUnderTest,trainingMat,hwLabels,3)print "the classifier came back with: %d,the real answer is : %d" % (classifierResult,classNumStr)if(classifierResult != classNumStr) : errorCount += 1.0print "\nthe total number of errors is: %d" % errorCountprint "\nthe total error rate is:%f" % (errorCount / float(mTest))'''
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
print(datingDataMat)
print(datingLabels[0:20])
normMat,ranges,minVals = autoNorm(datingDataMat)
print('\n')
print(normMat)
print(ranges)
print(minVals)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0 * array(datingLabels))
plt.show()
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
ax1.scatter(normMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0 * array(datingLabels))
plt.show()
datingClassTest()
'''
#classifyPerson()
#testVector = img2vector('0_13.txt')
#print testVector[0,0:31]
#print testVector[0,32:63]
handwritingClassTest()


这篇关于机器学习实战(k-近邻算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104986

相关文章

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

Redis 命令详解与实战案例

《Redis命令详解与实战案例》本文详细介绍了Redis的基础知识、核心数据结构与命令、高级功能与命令、最佳实践与性能优化,以及实战应用场景,通过实战案例,展示了如何使用Redis构建高性能应用系统... 目录Redis 命令详解与实战案例一、Redis 基础介绍二、Redis 核心数据结构与命令1. 字符

在SpringBoot+MyBatis项目中实现MySQL读写分离的实战指南

《在SpringBoot+MyBatis项目中实现MySQL读写分离的实战指南》在SpringBoot和MyBatis项目中实现MySQL读写分离,主要有两种思路:一种是在应用层通过代码和配置手动控制... 目录如何选择实现方案核心实现:应用层手动分离实施中的关键问题与解决方案总结在Spring Boot和

Python AST 模块实战演示

《PythonAST模块实战演示》Python的ast模块提供了一种处理Python代码的强大工具,通过解析代码生成抽象语法树(AST),可以进行代码分析、修改和生成,接下来通过本文给大家介绍Py... 目录 什么是抽象语法树(AST)️ ast 模块的核心用法1. 解析代码生成 AST2. 查看 AST

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关