机器学习实战(k-近邻算法)

2024-08-25 07:58

本文主要是介绍机器学习实战(k-近邻算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签。简称kNN。通常k是不大于20的整数,这里的距离一般是欧式距离。

K最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
下面是机器学习实战书中一些代码的实现:

其中包含使用k-邻近算法改进约会网站配对效果代码和手写识别系统的代码:

#coding=UTF8 
from numpy import *
import matplotlib
import matplotlib.pyplot as plt
import operator
from os import listdirdef createDataSet():group = array([[3,104],[2,100],[1,81],[101,10],[99,5]]) #训练集labels = ['affectional film','affectional film','affectional film','action movie',"action movie"]return group,labelsdef classify0(inX,dataSet,labels,k):dataSetSize = dataSet.shape[0]diffMat = tile(inX, (dataSetSize,1)) - dataSetsqDiffMat = diffMat ** 2; #diffMat ^ 2sqDistances = sqDiffMat.sum(axis=1) #将矩阵的每一行相加比如[[2,1,3],[1,1,1]]结果为[6,3]distances = sqDistances ** 0.5 #sqDistances ^ (1/2)sortedDistIndicies = distances.argsort()classCount = {}for i in range(k):voteIlabel = labels[sortedDistIndicies[i]]classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)   #获取对象的第1个域的值return sortedClassCount[0][0]def file2matrix(filename):fr = open(filename)numberOfLines = len(fr.readlines())         #get the number of lines in the filereturnMat = zeros((numberOfLines,3))        #prepare matrix to returnclassLabelVector = []                       #prepare labels return   fr = open(filename)index = 0for line in fr.readlines():line = line.strip()listFromLine = line.split('\t')returnMat[index,:] = listFromLine[0:3]classLabelVector.append(int(listFromLine[-1]))index += 1return returnMat,classLabelVectordef autoNorm(dataSet):minVals = dataSet.min(0) #参数0从当前列选取最小值maxVals = dataSet.max(0) #同上ranges = maxVals - minValsnormDataSet = zeros(shape(dataSet)) #创建规模为dataSet的零矩阵m = dataSet.shape[0] #行normDataSet = dataSet - tile(minVals, (m,1)) #m行1列的minValsnormDataSet = normDataSet / tile(ranges, (m,1))return normDataSet,ranges,minValsdef datingClassTest():hoRatio = 0.10datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')normMat,ranges,minVals = autoNorm(datingDataMat)m = normMat.shape[0] #行numTestVecs = int(m * hoRatio) #算出测试数据errorCount = 0.0for i in range(numTestVecs):classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:], datingLabels[numTestVecs:m], 3) #@param1:读入每行的数据,@param2:样本数据,因为测试数据是0-numTestVecsprint "the classifier came back with: %d,the real answer is : %d" % (classifierResult,datingLabels[i])if(classifierResult != datingLabels[i]):errorCount += 1.0print "the total error rate is: %f" % (errorCount / float(numTestVecs))def classifyPerson():percentTats = float(raw_input("输入玩视频游戏所消耗时间的百分比:"))ffMiles = float(raw_input("输入每年获得的飞行常客里程数:"))iceCream = float(raw_input("输入每周消费的冰淇淋公升数:"))datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')normMat,ranges,minVals = autoNorm(datingDataMat)inArr = array([ffMiles,percentTats,iceCream])classifierResult = classify0((inArr-minVals)/ranges, normMat ,datingLabels , 3)print(classifierResult)temp = classifierResult - 1;if temp == 0:print("一点都不喜欢这个人")elif temp == 1:print("一般般")else:print("非常喜欢")def img2vector(filename):returnVect = zeros((1,1024))fr = open(filename)for i in range(32):lineStr = fr.readline()for j in range(32):returnVect[0,32*i+j] = int(lineStr[j])return returnVect #returnVect为1*1024的数组def handwritingClassTest():hwLabels = []trainingFileList = listdir("trainingDigits")m = len(trainingFileList)trainingMat = zeros((m,1024))for i in range(m):  #这是训练集fileNameStr = trainingFileList[i]fileStr = fileNameStr.split('.')[0]classNumStr = int(fileStr.split('_')[0])hwLabels.append(classNumStr)trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)testFileList = listdir('testDigits')errorCount = 0.0mTest = len(testFileList)for i in range(mTest):  #这是测试集fileNameStr = testFileList[i]fileStr = fileNameStr.split('.')[0]classNumStr = int(fileStr.split('_')[0])vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)classifierResult = classify0(vectorUnderTest,trainingMat,hwLabels,3)print "the classifier came back with: %d,the real answer is : %d" % (classifierResult,classNumStr)if(classifierResult != classNumStr) : errorCount += 1.0print "\nthe total number of errors is: %d" % errorCountprint "\nthe total error rate is:%f" % (errorCount / float(mTest))'''
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
print(datingDataMat)
print(datingLabels[0:20])
normMat,ranges,minVals = autoNorm(datingDataMat)
print('\n')
print(normMat)
print(ranges)
print(minVals)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0 * array(datingLabels))
plt.show()
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
ax1.scatter(normMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0 * array(datingLabels))
plt.show()
datingClassTest()
'''
#classifyPerson()
#testVector = img2vector('0_13.txt')
#print testVector[0,0:31]
#print testVector[0,32:63]
handwritingClassTest()


这篇关于机器学习实战(k-近邻算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104986

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖