【学习笔记】时间序列模型(ARIMA)

2024-08-25 03:04

本文主要是介绍【学习笔记】时间序列模型(ARIMA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、时间序列
    • 时间序列数据
  • 二、ARIMA 模型大纲
    • 模型前提
      • 平稳性检验
    • 差分整合移动平均自回归模型 ARIMA(p,q,d)
      • 自回归模型 (AR( p ))
      • 移动平均模型 (MA( q ))
      • 自回归移动平均模型(ARMA(p,q))
      • 差分自回归移动平均模型 ARIMA(p,d,q)
    • 确定 p,q
    • 结果分析和模型检验


前言

通过模型算法,熟练对 python 的应用。
学习视频链接:
https://www.bilibili.com/video/BV1EK41187QF?p=50&vd_source=67471d3a1b4f517b7a7964093e62f7e6

一、时间序列

时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列。时间序列分析大致可分成三大部分,分别是描述过去、分析规律和预测未来,本文主要介绍时间序列分析中常用 ARIMA 模型。

时间序列数据

对同一对象在不同时间连续观察所取得的数据,它具备两个要素,第一个要素是时间要素,第
二个要素是数值要素

时间序列根据时间和数值性质的不同,可以分为时期时间序列时点时间序列

  • 时期序列中,数值要素反映现象在一定时期内发展的结果
  • 时点序列中,数值要素反映现象在一定时点上的瞬间水平

时期序列可加,时点序列不可加

二、ARIMA 模型大纲

在这里插入图片描述

ARIMA 模型的建模步骤

  • 对序列绘图,进行平稳性检验,观察序列是否平稳;对于非平稳时间序列要先进行 d 阶差分,
    转化为平稳时间序列;
  • 经过第一步处理,已经得到平稳时间序列。要对平稳时间序列分别求得其自相关系数(ACF)
    和偏自相关系数(PACF),通过对自相关图和偏自相关图的分析,得到最佳的阶数 p、q ;
  • 由以上得到的 d、q、p,得到 ARIMA 模型。然后开始对得到的模型进行模型检验。

模型前提

平稳性

  • 平稳性就是要求经由样本时间序列所得到的拟合曲线在未来的一段时间内仍然能够按照现有
    的形态延续下去
  • 平稳性要求序列的均值和方差不发生明显变化
    • 严平稳:序列所有的统计性质(期望,方差)都不会随着时间的推移而发生变化
    • 宽平稳:期望与相关系数(依赖性)不变,就是说 t t t 时刻的值 X X X 依赖于过去的信息

差分法实现

  • 时间序列在 t t t t − 1 t-1 t1 时刻的差值,将非平稳序列变平稳
    Δ y x = y ( x + 1 ) − y ( x ) , ( x = 0 , 1 , 2 , . . . ) \Delta yx=y(x+1)-y(x),(x=0,1,2,...) Δyx=y(x+1)y(x),(x=0,1,2,...)
  • 比如一组数列 [0,1,2,3,4,5,6,7]
  • 进行差分后就会得到新数列 [1,1,1,1,1,1]

平稳性检验

对于一个时间序列,如何确定它是否满足平稳性要求?
通常采用图检验法(通过时间序列趋势图或者自相关函数图判断) 或 ADF 检验

ADF检验

  • ADF 大致的思想就是基于随即游走(不平稳的一个特殊序列)的,对其进行回归,如果发现 p = 1 p=1 p=1,说明序列满足随机游走,就是非平稳的

图检验法

  1. 自相关系数(ACF)
    有序的随机变量序列与其自身相比较。自相关系数反映了同一序列在不同时序的取值之间的相关性,对于时间序列 y t y_t yt y t y_t yt y t − k y_{t-k} ytk 的相关系数称为 y t y_t yt 间隔 k k k 的自相关系数。

  2. 偏自相关系数 (PACF)
    为了能单纯测度 y ( t − k ) y(t-k) y(tk) y ( t ) y(t) y(t) 的影响,引进偏自相关系数 ( P A C F ) (PACF) (PACF) 的概念。对于平稳时间序列 { y ( t ) } \{y(t)\} {y(t)},所谓滞后 k k k 偏自相关系数指在剔除了中间 k − 1 k-1 k1 个随机变量 y ( t − 1 ) , y ( t − 2 ) , . . . , y ( t − k + 1 ) y(t-1),y(t-2),...,y(t-k+1) y(t1),y(t2),...,y(tk+1) 的干扰之后, y ( t − k ) y(t-k) y(tk) y ( t ) y(t) y(t) 影响的相关程度。

  • 下图是训练集的 ACF 和 PACF 图,由图形可以看出,大部分的值都落在了置信区间内,可以把训练集本身作为平稳序列,无需差分。
    在这里插入图片描述

差分整合移动平均自回归模型 ARIMA(p,q,d)

自回归模型 (AR( p ))

  • 描述当前值历史值之间的关系,用变量自身的历史数据对自身进行预测,其必须要满足平稳性要求,只适用于预测与自身前期相关的现象(时间序列的自相关性)
  • p p p 阶自回归过程的公式定义: y t = μ + ∑ i = 1 p γ i y t − i + ϵ t , p y_\mathrm{t}=\mu+\sum_{i=1}^p\gamma_iy_{t-i}+\epsilon_t,p yt=μ+i=1pγiyti+ϵt,p 表示用几期的历史值来预测
  • y t y_t yt 是当前值 μ \mu μ 是常数项 p p p 是阶数 γ i \gamma_i γi 是自相关系数

移动平均模型 (MA( q ))

  • 移动平均模型关注的是自回归模型中误差项的累计
  • q q q 阶自回归过程的公式定义: y t = μ + ϵ t + ∑ i = 1 q θ i ϵ t − i y_\mathrm{t}=\mu+\epsilon_t+\sum_{i=1}^q\theta_i\epsilon_{t-i} yt=μ+ϵt+i=1qθiϵti
  • 即时间序列当前值与历史值没有关系,而只依赖于历史白噪声的线性组合
  • 移动平均法能有效地消除预测中的随机波动

自回归移动平均模型(ARMA(p,q))

  • 自回归与移动平均的结合
  • 公式定义: y t = μ + ∑ i = 1 p γ i y t − i + ϵ t + ∑ i = 1 q θ i ϵ t − i y_{\mathrm{t}}=\mu+\sum_{i=1}^{p}\gamma_{i}y_{t-i}+\epsilon_{t}+\sum_{i=1}^{q}\theta_{i}\epsilon_{t-i} yt=μ+i=1pγiyti+ϵt+i=1qθiϵti
  • 该式表明:
    • 一个随机时间序列可以通过一个自回归移动平均模型来表示,即该序列可以由其自身的过去或滞后值以及随机扰动项来解释。
    • 如果该序列是平稳的,即它的行为并不会随着时间的推移而变化,那么我们就可以通过该序列过去的行为来预测未来。

差分自回归移动平均模型 ARIMA(p,d,q)

  • 将自回归模型 ( A R ) (AR) (AR)、移动平均模型 ( M A ) (MA) (MA)和差分法结合,我们就得到了差分自回归移动平均模型 A R I M A ( p , d , q ) {ARIMA}(p,d,q) ARIMA(p,d,q)
  • p p p 是自回归项, q q q 为移动平均项数, d d d 为时间序列成为平稳时所做的差分次数
  • 原理:将非平稳时间序列转化为平稳时间序列然后将因变量仅对它的滞后值以及随机误差项的
    现值和滞后值进行回归所建立的模型

确定 p,q

1. 相关函数法

  • 拖尾和截尾:拖尾指序列以指数率单调递减或震荡衰减,而截尾指序列从某个时点变得非常小

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2. AIC、BIC准则

  • AIC 准则全称是最小化信息量准则( Akaike Information Criterion):
    A I C = − 21 n ( L ) + 2 K AIC=-21n(L)+2K AIC=21n(L)+2K,其中 L L L 表示模型的极大似然函数, K K K 表示模型参数个数
  • AIC 准则存在一定的不足。当样本容量很大时,在 AIC 准则中拟合误差提供的信息就要受到样本容量的放大,而参数个数的惩罚因子却和样本容量没关系(一直是2),因此当样本容量很大时, 使用 AIC 准则的模型不收敛于真实模型,它通常比真实模型所含的未知参数个数要多
  • BIC( Bayesian InformationCriterion)贝叶斯信息准则弥补了 AIC 的不足:
    B I C = − 21 n ( L ) + K 1 n ( n ) BIC=-21n(L)+K1n(n) BIC=21n(L)+K1n(n),其中 n 表示样本容量。
  • 显然,这两个评价指标越小越好。我们通过网格搜索,确定 AIC、BIC 最优的模型 (p、q)

以 BIC 准则为例,确定 p,q 的取值范围为 [0,5],通过循环网格搜索所有组合的 BIC 的值,得到结果如下图
在这里插入图片描述
可以看到,BIC最小值的组合为 (‘AR1’,‘MA0’)

结果分析和模型检验

  • 检验参数估计的显著性( t 检验)
  • 检验残差序列的随机性,即残差之间是独立的 e i = y i − y ^ i e_i=y_i-\hat{y}_i ei=yiy^i
  • 残差序列的随机性可以通过自相关函数法来检验,即做残差的自相关函数图
  • 从 ACF 图中可以看出残差之间独立性比较高

在这里插入图片描述

这篇关于【学习笔记】时间序列模型(ARIMA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104360

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss