代码随想录算法day22 | 回溯算法part04 | 491.递增子序列,46.全排列,47.全排列 II

2024-08-25 02:28

本文主要是介绍代码随想录算法day22 | 回溯算法part04 | 491.递增子序列,46.全排列,47.全排列 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

491.递增子序列

本题和大家做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。

力扣题目链接(opens new window)

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

  • 输入: [4, 6, 7, 7]
  • 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

  • 给定数组的长度不会超过15。
  • 数组中的整数范围是 [-100,100]。
  • 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。

这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。

这又是子集,又是去重,是不是不由自主的想起了上篇博客讲过的 90.子集Ⅱ 。代码随想录算法day21 | 回溯算法part03 | 93.复原IP地址, 78.子集,90.子集II-CSDN博客

就是因为太像了,更要注意差别所在,要不就掉坑里了!

 90.子集Ⅱ 中我们是通过排序,再加一个标记数组来达到去重的目的。

而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。

所以不能使用之前的去重逻辑!

本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。

为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

491. 递增子序列1

回溯三部曲

  • 递归函数参数

本题求子序列,很明显一个元素不能重复使用,所以需要 startIndex,调整下一层递归的起始位置。

代码如下:

List<List<Integer>> result = new ArrayList<>();
List<Integer> path = new LinkedList<>();
public void backtracking(int[] nums, int startIndex)
  • 终止条件

本题其实类似求子集问题,也是要遍历树形结构找每一个节点,可以不加终止条件,startIndex 每次都会加1,并不会无限递归。

但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:

if (path.size() > 1) {result.add(new ArrayList<>(path);// 注意这里不要加return,因为要取树上的所有节点
}
  • 单层搜索逻辑

491. 递增子序列1

 在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了

那么单层搜索代码如下:

int[] used = new int[201];
for (int i = start; i < nums.length; i++) {if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) ||(used[nums[i] + 100] == 1)) continue;used[nums[i] + 100] = 1;path.add(nums[i]);backtracking(nums, i + 1);path.remove(path.size() - 1);
}

最后整体Java代码如下:

// 使用数组used
class Solution {private List<Integer> path = new ArrayList<>();private List<List<Integer>> res = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backtracking(nums,0);return res;}private void backtracking (int[] nums, int start) {if (path.size() > 1) {res.add(new ArrayList<>(path));}int[] used = new int[201];for (int i = start; i < nums.length; i++) {if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) ||(used[nums[i] + 100] == 1)) continue;used[nums[i] + 100] = 1;path.add(nums[i]);backtracking(nums, i + 1);path.remove(path.size() - 1);}}
}// 使用hashSet
class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex){if(path.size() >= 2)result.add(new ArrayList<>(path));            HashSet<Integer> hs = new HashSet<>();for(int i = startIndex; i < nums.length; i++){if(!path.isEmpty() && path.get(path.size() -1 ) > nums[i] || hs.contains(nums[i]))continue;hs.add(nums[i]);path.add(nums[i]);backTracking(nums, i + 1);path.remove(path.size() - 1);}}
}//使用map
class Solution {//结果集合List<List<Integer>> res = new ArrayList<>();//路径集合LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> findSubsequences(int[] nums) {getSubsequences(nums,0);return res;}private void getSubsequences( int[] nums, int start ) {if(path.size()>1 ){res.add( new ArrayList<>(path) );// 注意这里不要加return,要取树上的节点}HashMap<Integer,Integer> map = new HashMap<>();for(int i=start ;i < nums.length ;i++){if(!path.isEmpty() && nums[i]< path.getLast()){continue;}// 使用过了当前数字if ( map.getOrDefault( nums[i],0 ) >=1 ){continue;}map.put(nums[i],map.getOrDefault( nums[i],0 )+1);path.add( nums[i] );getSubsequences( nums,i+1 );path.removeLast();}}
}

对于已经习惯写回溯的同学,看到递归函数上面的 hs.add(nums[i]);,下面却没有对应的 remove之类的操作,应该很不习惯吧

这也是需要注意的点,HashSet<Integer> hs 是记录本层元素是否重复使用,新的一层 hs 都会重新定义(清空),所以要知道 hs 只负责本层

而之前的 40.组合总和Ⅱ 之所以需要更改 used 的值是因为每次递归都不会重新定义,一直重复利用的东西需要每次回溯的时候清空本次递归造成的结果

代码随想录算法day20 | 回溯算法part02 | 39. 组合总和,40.组合总和II,131.分割回文串-CSDN博客

总结

本题题解清一色都说是深度优先搜索,但我更倾向于说它用回溯法,而且本题我也是完全使用回溯法的逻辑来分析的。

相信大家在本题中处处都能看到是 求子集 的身影,但处处又都是陷阱。

对于养成思维定式或者套模板套嗨了的同学,这道题起到了很好的警醒作用。更重要的是拓展了大家的思路!


46.全排列

本题重点感受一下,排列问题 与 组合问题,组合总和,子集问题的区别。 为什么排列问题不用 startIndex

力扣题目链接(opens new window)

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

  • 输入: [1,2,3]
  • 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

此时我们已经学习了 77.组合问题、 131.分割回文串 78.子集问题,接下来看一看排列问题。

代码随想录算法day19 | 回溯算法part01 | 77. 组合,216.组合总和III,17.电话号码的字母组合-CSDN博客

代码随想录算法day20 | 回溯算法part02 | 39. 组合总和,40.组合总和II,131.分割回文串-CSDN博客

代码随想录算法day21 | 回溯算法part03 | 93.复原IP地址, 78.子集,90.子集II-CSDN博客

相信这个排列问题就算是让你用 for 循环暴力把结果搜索出来,这个暴力也不是很好写。

所以正如我们之前所讲的为什么回溯法是暴力搜索,效率这么低,还要用它?——因为一些问题能暴力搜出来就已经很不错了!

以[1,2,3]为例,抽象成树形结构如下:

全排列

回溯三部曲

  • 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,可重复,所以处理排列问题就不用使用 startIndex 了。

但排列问题需要一个 used 数组,标记已经选择的元素,如图橘黄色部分所示:

全排列

代码如下:

List<List<Integer>> result = new ArrayList<>();
List<Integer> path = new LinkedList<>();
public void backtracking (int[] nums, bool[] used)
  • 递归终止条件

全排列

可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组 path 的大小达到和 nums 数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

// 此时说明找到了一组
if (path.size() == nums.length) {result.add(new ArrayList<>(path));return;
}
  • 单层搜索的逻辑

这里和 77.组合问题、 131.分割回文串 78.子集问题 最大的不同就是 for 循环里不用 startIndex了。

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而 used 数组,其实就是记录此时 path 里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

for (int i = 0; i < nums.length; i++) {if(used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.add(nums[i]);backtracking(nums, used);path.removeLast();used[i] = false;
}

整体Java代码如下:

class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果boolean[] used;public List<List<Integer>> permute(int[] nums) {if (nums.length == 0){return result;}used = new boolean[nums.length];permuteHelper(nums);return result;}private void permuteHelper(int[] nums){if (path.size() == nums.length){result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++){if (used[i]){continue;}used[i] = true;path.add(nums[i]);permuteHelper(nums);path.removeLast();used[i] = false;}}
}
  • 时间复杂度: O(n!)
  • 空间复杂度: O(n)

拓展

不引入额外参数 used 其实也可以实现记录遍历过的参数,只需要调用 LinkedList.contains() 方法来判断 path 中是否存在该数字即可

// 解法2:通过判断path中是否存在数字,排除已经选择的数字
class Solution {List<List<Integer>> result = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> permute(int[] nums) {if (nums.length == 0) return result;backtrack(nums, path);return result;}public void backtrack(int[] nums, LinkedList<Integer> path) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));}for (int i =0; i < nums.length; i++) {// 如果path中已有,则跳过if (path.contains(nums[i])) {continue;} path.add(nums[i]);backtrack(nums, path);path.removeLast();}}
}

总结

大家此时可以感受出排列问题的不同:

  • 每层都是从 0 开始搜索而不是 startIndex
  • 需要 used 数组记录 path 里都放了哪些元素了

排列问题是回溯算法解决的经典题目,大家可以好好体会体会。


47.全排列 II

本题 就是讲过的 40.组合总和II 去重逻辑 和 46.全排列 的结合,重点看一下 拓展内容中的 used[i - 1] == true 也行,used[i - 1] == false 也行

力扣题目链接(opens new window)

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

  • 输入:nums = [1,1,2]
  • 输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:

  • 输入:nums = [1,2,3]
  • 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

这道题目和 46.全排列 的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列

这里又涉及到去重了。

40.组合总和Ⅱ90.子集Ⅱ 我们分别详细讲解了组合问题和子集问题如何去重。

那么排列问题其实也是一样的套路。

还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

我以示例中的 [1,1,2] 为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

在 46.全排列 中已经详细讲解了排列问题的写法,在​​​​​​ ​40.组合总和Ⅱ90.子集Ⅱ 中详细讲解了去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下:

class Solution {//存放结果List<List<Integer>> result = new ArrayList<>();//暂存结果List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length];Arrays.fill(used, false);Arrays.sort(nums);backTrack(nums, used);return result;}private void backTrack(int[] nums, boolean[] used) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {// used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过// used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过// 如果同⼀树层nums[i - 1]使⽤过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}//如果同⼀树⽀nums[i]没使⽤过开始处理if (used[i] == false) {used[i] = true;//标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用path.add(nums[i]);backTrack(nums, used);path.remove(path.size() - 1);//回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复used[i] = false;//回溯}}}
}

拓展

大家发现,去重最为关键的代码为:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;
}

如果改成 used[i - 1] == true, 也是正确的!,去重代码如下:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {continue;
}

这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false,如果要对树枝前一位去重用used[i - 1] == true

对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!

这么说是不是有点抽象?

来来来,我就用输入: [1,1,1] 来举一个例子。

树层上去重(used[i - 1] == false),的树形结构如下:

47.全排列II2

树枝上去重(used[i - 1] == true)的树型结构如下:

47.全排列II3

大家应该很清晰的看到,树层上对前一位去重非常彻底,效率很高,树枝上对前一位去重虽然最后可以得到答案,但是做了很多无用搜索

总结

这道题其实还是用了我们之前讲过的去重思路,但有意思的是,去重的代码中,这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;
}

和这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {continue;
}

都是可以的,这也是很多同学做这道题目困惑的地方,知道 used[i - 1] == false 也行而 used[i - 1] == true 也行,但是就想不明白为啥。

所以我通过举[1,1,1]的例子,把这两个去重的逻辑分别抽象成树形结构,大家可以一目了然:为什么两种写法都可以以及哪一种效率更高!

这里可能大家又有疑惑,既然 used[i - 1] == false也行而used[i - 1] == true也行,那为什么还要写这个条件呢?

直接这样写 不就完事了?

if (i > 0 && nums[i] == nums[i - 1]) {continue;
}

其实并不行,一定要加上 used[i - 1] == false 或者 used[i - 1] == true因为 used[i - 1] 要一直是 true 或者一直是false 才可以,而不是 一会是true 一会又是false。 所以这个条件要写上。

是不是豁然开朗了!!

这篇关于代码随想录算法day22 | 回溯算法part04 | 491.递增子序列,46.全排列,47.全排列 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104285

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义