AI在医学领域:在软组织和骨骼肿瘤放射学成像中的应用综述

本文主要是介绍AI在医学领域:在软组织和骨骼肿瘤放射学成像中的应用综述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      软组织和骨骼肿瘤(Soft-tissue and bone tumours,STBT)是人体中较为罕见的肿瘤,包括良性和恶性病变。恶性STBT,约占所有肿瘤的1%。这些肿瘤可以发生在任何年龄和几乎所有解剖部位,起源于包括肌肉、脂肪、血管、软骨和骨骼在内的结缔组织细胞。STBT的罕见性以及它们的亚型多样性和不同的临床表现,为准确诊断和预后带来了巨大挑战。

      放射学成像(包括核医学)在评估和监测STBT中至关重要。成像技术的进步导致了数据量的大幅增加,同时也增加了对解读这些数据所需的专业知识。随着放射学成像使用的增加和分析的复杂性,放射科医生的工作量也随之增加。因此,开发智能计算机辅助系统和算法以实现自动化图像分析,从而快速准确地得出结果是至关重要的。对于STBT,智能系统可能帮助非专业放射科医生更有效地诊断罕见癌症。此外,随着病例量的增加,解释错误的可能性也更高,这可以通过计算机辅助诊断工具来避免。

     人工智能在医学图像分析中的使用日益普及。在过去7年中,FDA批准的放射学成像AI产品数量大幅增加。然而,尽管STBT领域的医学成像AI研究也大幅增加,但在FDA批准的名单中并没有针对STBT的产品。因此,研究应该更多地集中在与未满足的临床需求相一致的领域,而不仅仅是开发新的技术解决方案。

     本目的是使用放射学成像对STBT进行诊断和预后的AI研究,根据两个最佳实践指南——CLAIM和FUTURE-AI——进行评估可以全面覆盖AI研究的不同方面讨论了未来研究的机会,以弥合AI研究和STBT临床使用之间已识别的差距。

1 方法

本研究纳入了截至 2023 年 9 月 27 日发表在同行评审期刊上的原始研究,重点关注基于放射学的 AI 方法,用于诊断或预测原发性 STBT。

关于软组织和骨骼肿瘤(STBT)的AI方法研究的数量

PRISMA流程图

1.1 文献检索和筛选

  • 数据库检索: 本研究系统地检索了 Medline、Embase、Web of Science 核心集、Google Scholar 和 Cochrane 中央对照试验注册库,涵盖了所有可用的相关研究文献。
  • 检索策略: 检索策略根据不同的数据库进行了定制,以确保全面检索相关文献。
  • 纳入标准: 纳入标准包括:发表在同行评审期刊上的原始研究。重点关注基于放射学的 AI 或放射组学特征,用于诊断或预测原发性 STBT
  • 排除标准:动物、尸体或实验室研究及非英语文献
  • 文献筛选: 文献筛选过程由三位独立评审员进行,包括标题和摘要筛选以及全文审查。

1.2 数据提取

对于纳入的研究,提取了以下信息:

  • 发表年份和期刊
  • 研究类型 (软组织肿瘤、骨肿瘤、GIST)
  • 研究设计 (回顾性、前瞻性)
  • 预测结果 (诊断、预后、两者)
  • 成像模态
  • 数据来源 (公开、单中心、多中心)
  • 数据和 AI 模型源代码的可用性

1.3 文献评估

  • CLAIM 指南: 使用 CLAIM 指南评估纳入研究的质量。CLAIM 指南由美国放射学会 (RSNA) 推荐使用,涵盖了 44 个项目,涉及标题、摘要、引言、方法、结果、讨论和其他信息。
  • FUTURE-AI 指南: 使用 FUTURE-AI 指南评估纳入研究的质量。FUTURE-AI 指南提出了确保 AI 工具值得信赖、可部署和可应用的国际共识指南,涵盖了 30 个项目,根据六个原则进行划分:公平性、普遍性、可追溯性、可用性、鲁棒性和可解释性。
  • 评分标准: 对于每个项目,评分范围为 0 到 1,0 表示未解决,0.5 表示部分解决(FUTURE-AI 中适用),1 表示完全解决。
  • 评分一致性: 为了确保评分的一致性,对一部分研究进行了三位评审员的独立评分,并进行了一致性分析。

1.4 数据分析

  • 描述性统计分析: 对每个项目、每个部分/原则以及指南符合率的描述性统计进行了计算,包括均值、标准差、最大值、最小值以及均值和标准差。
  • 可视化和交互式图表: 纳入研究的评分结果以交互式图表的形式呈现,方便读者查看和分析。

2 结果

2.1 研究数量和质量

搜索发现了 15,015 篇摘要,其中 325 篇文章被纳入评估。大多数研究在 CLAIM 指南下表现一般,平均得分为 28.9 (满分 53),但在 FUTURE-AI 指南下表现较差,平均得分为 5.1 (满分 30)。

2.2 研究特征

  • 纳入的研究主要使用手工特征与机器学习 (68%) 或模型学习特征 (19%) 进行 AI 分析。
  • 研究疾病类型包括软组织肿瘤 (38.5%)、骨肿瘤 (35.1%) 和 GIST (25.2%)。
  • 大多数研究为回顾性研究 (83.7%),少数为前瞻性研究 (11.7%)。
  • 研究主要关注预测诊断 (63.4%),其次是预后评估 (33.5%)。
  • 研究使用的成像技术包括 MRI、CT、超声、X 光、PET-CT、PET-MRI 和放射性核素成像等。
  • 数据来源多为单中心数据 (58.5%),少数使用多中心数据 (28.6%)。
  • 大多数研究没有公开数据集和 AI 模型代码。

2.3 与指南的符合程度

纳入的研究在 CLAIM 指南下表现较好,但仍有改进空间,例如:

  • 在设计阶段明确研究假设 (13.8%)。
  • 明确数据脱敏方法 (3.4%)。
  • 处理缺失数据的方法 (8.2%)。
  • 明确目标样本量和确定方法 (4%)。
  • 进行稳健性或敏感性分析 (13.8%)。
  • 解释性或可解释性方法 (12.9%)。

纳入的研究在 FUTURE-AI 指南下表现较差,但趋势有所改善:

  • 明确潜在偏差来源 (37%)。
  • 收集并报告个人属性 (83.1%)。
  • 使用社区定义的标准 (56%)。
  • 定义使用和用户需求 (85.2%)。
  • 吸引跨学科利益相关者 (86.2%)。
  • 实施数据隐私和安全措施 (85.2%)。
  • 定义充分的评估计划 (67.7%)。

3 建议

3.1 设计阶段

  • 明确临床需求、AI 的预期用途、临床设置和用户需求。
  • 早期识别潜在的偏差来源。

3.2 开发阶段

  • 使用反映真实世界数据的数据集进行训练。
  • 开发可解释的 AI 方法。
  • 建立在现有研究的基础上,并进行验证或改进。
  • 确保 AI 工具易于使用。

3.3 评估阶段

  • 使用独立的外部测试数据评估 AI 工具。
  • 将 AI 工具与最佳实践进行比较。
  • 进行错误分类案例的失败分析。
  • 研究数据、模型和偏差的鲁棒性。

3.4 可重复性

  • 公开代码,并确保其可读性、可用性和可追溯性。
  • 全面描述方法,包括数据预处理、真值获取、AI 方法描述和训练过程。

3.5 数据可用性

  • 在临床实践中引入结构化和标准化的报告。
  • 三级肉瘤中心收集标注数据并公开,保护患者隐私。
  • 使用联邦学习保护患者隐私并促进数据共享。

这篇关于AI在医学领域:在软组织和骨骼肿瘤放射学成像中的应用综述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102751

相关文章

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

MobaXterm远程登录工具功能与应用小结

《MobaXterm远程登录工具功能与应用小结》MobaXterm是一款功能强大的远程终端软件,主要支持SSH登录,拥有多种远程协议,实现跨平台访问,它包括多会话管理、本地命令行执行、图形化界面集成和... 目录1. 远程终端软件概述1.1 远程终端软件的定义与用途1.2 远程终端软件的关键特性2. 支持的

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek