深度学习三维重建-双目视差三维重建小笔记

2024-08-24 07:58

本文主要是介绍深度学习三维重建-双目视差三维重建小笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

记录一下深度学习进行双目三维重建看过的网络
持续更新(时不时更新)
数据集:
SceneFlow
KITTI
ETH3D
与三维有关的数据集:
TanksAndTemples
一大堆Github总结的数据集
Github大佬的笔记


-----------------------------------我是分界线------------------------------------

双目三维重建:立体匹配就4个步骤:匹配代价计算,代价聚合,计算视差,视差精化。
传统方法有必要了解,局部、非局部、全局的匹配算法都有必要了解一下,但是我没有全部过一遍,惭愧,很多方法的思路是别的算法突破的入口。
回到正题,这里要主要讲深度学习的双目视差匹配,这里并不是走到终点后的回顾,在写博客的同时在学习,会不断修正博客来整理思路。所以这里只记录双目匹配、视差网络相关的内容。序号也不会是规律的12345,而是会存在1.1/1.11/这样,都是后来插进去的重要内容。
插一个大哥总结的东西

1.0 Siamese Network

Learning a Similarity Metric Discriminatively, with Application to Face
Verification
CSDN:Siamese Network理解(附代码)
知乎:【模型解读】siamese network和triplet network原理与应用
//知乎这篇文章还讲述了triplet网络,但是这个东西在差异检测有用,在这里好像并没有什么价值,知道有这么个东西就好。
这个网络可以用来做:

  • 图像验证与匹对
  • 目标跟踪
  • 排序(估计年龄等)
    这个网络似乎很适合处理相对相似的两个场景图像,最开始是用来判断两幅图像的相似性。双目匹配就是一种相似性的密集匹配。
    这里先梳理下网络演变的线路:
    我选取的学习线路
    SceneFlow数据集最早用了FlowNet,然后Dispnet,并且数据集官方有榜单可以看。我选择了PSMNet作为学习目标,但是直接上手PSMNet难度有点大,按照这条路线来看,从简单到复杂。

2.0CVPR2016-A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation

dispnet
dispnet的前身是Flownet,文章前部分主要提了一些数据集制作的相关问题,这里的网络结构参照了光流的特性。

GC-net遍历视差,每一层视差做了一次特征图层,最终包含视差为0的情况,一共视差最大值+1层特征图,这带来了大量的空间开销。这种算法受图像分辨率限制比较严重,尤其是在测量条件下,想要提高测量精度,多数情况就是提高相机分辨率,这直接带来计算量大量提高。

这篇关于深度学习三维重建-双目视差三维重建小笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101899

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件