Onnx使用预训练的 ResNet18 模型对输入图像进行分类,并将分类结果显示在图像上

本文主要是介绍Onnx使用预训练的 ResNet18 模型对输入图像进行分类,并将分类结果显示在图像上,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、整体功能概述

二、函数分析

2.1 resnet() 函数:

2.2 pre_process(img_path) 函数:

2.3 loadOnnx(img_path) 函数:

三、代码执行流程


一、整体功能概述


这段代码实现了一个图像分类系统,使用预训练的 ResNet18 模型对输入图像进行分类,并将分类结果显示在图像上。它包括以下主要步骤:
读取一个包含类别名称和对应编号的文本文件,并将其存储在字典中。
定义了几个函数,包括模型导出函数 resnet()、图像预处理函数 pre_process() 和加载 ONNX 模型进行分类的函数 loadOnnx()。
在主程序中,指定输入图像路径,调用 loadOnnx() 函数对图像进行分类并显示结果。


二、函数分析


2.1 resnet() 函数:


使用 torchvision 中的预训练 ResNet18 模型,并设置为评估模式。
生成一个随机输入张量 x,并将模型导出为 ONNX 格式,保存为 models/resnet18.onnx 文件。

def resnet():model=models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)model.eval()x=torch.randn(1,3,224,224)torch.onnx.export(model,x,'models/resnet18.onnx',input_names=['input'],output_names=['output'])


2.2 pre_process(img_path) 函数:


读取输入图像 img_path。
调整图像大小为 224x224。
将图像颜色通道从 BGR 转换为 RGB。
对图像像素值进行归一化处理。
交换图像维度顺序,并增加一个维度。
返回预处理后的图像张量。

def pre_process(img_path):#h w c--->224,224,3#归一化#换轴#增加维度img=cv2.imread(img_path)scale_image=cv2.resize(img,dsize=(224,224))rgb_img=cv2.cvtColor(scale_image,cv2.COLOR_BGR2RGB)rgb_img=rgb_img/255rgb_img=np.transpose(rgb_img,(2,0,1))rgb_img=np.expand_dims(rgb_img,0).astype(np.float32)return rgb_img


2.3 loadOnnx(img_path) 函数:


创建一个 ONNX 推理会话,加载预导出的 ResNet18 ONNX 模型。

调用 pre_process() 函数对输入图像进行预处理。
准备输入数据并进行推理。
获取推理结果中概率最大的类别编号。
根据类别编号从字典中获取对应的类别名称,并进行翻译。
在输入图像上显示分类结果,并展示图像。

def loadOnnx(img_path):session=ort.InferenceSession(r'models\resnet18.onnx',providers=['CPUExecutionProvider'])img=pre_process(img_path)img_back=cv2.imread(img_path)intput_feed={'input':img}session_out=session.run(None,intput_feed)[0]out=np.argmax(session_out,axis=1)[0]res=str(out)# print(dict[res])ans=dict[res].split(',')[1].split(']')[0].strip()ans = translator.translate(ans)cv2.putText(img_back,ans,(100,100),fontFace=1,fontScale=2.0,color=(0,0,255),thickness=3,lineType=cv2.LINE_AA)cv2.imshow('win',img_back)cv2.waitKey(0)cv2.destroyAllWindows()print(ans)

完整代码如下

import cv2
import numpy as np
import torch
from torchvision import models
from torchvision.models import ResNet18_Weights
import onnxruntime as ort
from translate import Translator
translator=Translator(to_lang='Chinese')#翻译成中文
dict={}
with open('类别.txt','r',encoding='utf-8') as f:lines=f.readlines()for line in lines:name=line.split('\t')[0]value=line.split('\t')[1]dict[name]=value
# print(dict)
def resnet():model=models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)model.eval()x=torch.randn(1,3,224,224)torch.onnx.export(model,x,'models/resnet18.onnx',input_names=['input'],output_names=['output'])
def pre_process(img_path):#h w c--->224,224,3#归一化#换轴#增加维度img=cv2.imread(img_path)scale_image=cv2.resize(img,dsize=(224,224))rgb_img=cv2.cvtColor(scale_image,cv2.COLOR_BGR2RGB)rgb_img=rgb_img/255rgb_img=np.transpose(rgb_img,(2,0,1))rgb_img=np.expand_dims(rgb_img,0).astype(np.float32)return rgb_img#RGB
def loadOnnx(img_path):session=ort.InferenceSession(r'models\resnet18.onnx',providers=['CPUExecutionProvider'])img=pre_process(img_path)img_back=cv2.imread(img_path)intput_feed={'input':img}session_out=session.run(None,intput_feed)[0]out=np.argmax(session_out,axis=1)[0]res=str(out)# print(dict[res])ans=dict[res].split(',')[1].split(']')[0].strip()ans = translator.translate(ans)cv2.putText(img_back,ans,(100,100),fontFace=1,fontScale=2.0,color=(0,0,255),thickness=3,lineType=cv2.LINE_AA)cv2.imshow('win',img_back)cv2.waitKey(0)cv2.destroyAllWindows()print(ans)pass
if __name__ == '__main__':img_path='dog.png'# resnet()#导出模型loadOnnx(img_path)


三、代码执行流程


在 if __name__ == '__main__': 部分:
定义输入图像路径 img_path。
可以选择调用 resnet() 函数导出模型(注释状态,通常只在第一次运行或模型更新时使用)。
调用 loadOnnx(img_path) 函数对输入图像进行分类和显示结果。

 

 

这篇关于Onnx使用预训练的 ResNet18 模型对输入图像进行分类,并将分类结果显示在图像上的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101594

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi