Tensorflow针对CPU的编译优化加速-解决Not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA

本文主要是介绍Tensorflow针对CPU的编译优化加速-解决Not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍Tensorlfow 针对 CPU SSE4.1 SSE4.2 AVX AVX2 FMA 的编译优化,以提升Tensorflow在CPU上的计算速度,实测可以提升两倍以上的速度。

1、问题

在用 pip 安装tensorflow的CPU版本后,在运行的时候通常会出现如下提示:Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA

该提示说明你的CPU支持AVX扩展,但是你安装的TensorFlow版本无法编译使用。而AVX的利用可以大大提升线性代数运算。

由于AVX不是所有CPU都支持(实际上08年以后的intel  CPU都支持...),所以通过 pip install 安装的 tensorflow CPU 版本是不支持AVX的。

---------------

所谓AVX,全称为高级矢量扩展(Advanced Vector eXtensions,AVX)是英特尔在2008年3月提出的英特尔和AMD微处理器的x86指令集体系结构的扩展,英特尔首先通过Sandy Bridge处理器在2011年第一季度推出,随后由AMD推出Bulldozer处理器在2011年第三季度.AVX提供了新功能,新指令和新编码方案。

特别是,AVX引入了融合乘法累加(FMA)操作,加速了线性代数计算,即点积,矩阵乘法,卷积等。几乎所有机器学习训练都涉及大量这些操作,因此将会支持AVX和FMA的CPU(最高达300%)更快。该警告指出您的CPU确实支持AVX。

---------------

2、AVX编译优化

 Tensorflow使用谷歌开源的 Bazel 自动化构建工具编译项目,有一定的学习成本。

但是可以借助github上编译好的版本进行安装。 

(1)linux/Mac OS 编译

github地址: https://github.com/lakshayg/tensorflow-build

下表为开源项目中的一部分,根据Tensorflow、Ubuntu、GCC、和python版本选择对应的下载链接。

实际上版本并没有表中那么严格的限制,比如tensorflow版本,版本 1.4.0~1.13.0的主要API变动不大,假如表格中没有对应版本的话,可以选最近的版本,实测是可以通过的。

同样的,GCC版本假如高于表中的版本,也选最近的低版本即可

操作系统也不一定是Ubuntu,应该Debian系的都可以。

TFHWOSGCCPythonSupports 
1.9.0CPUUbuntu 16.045.43.6.6FMA, AVX, AVX2, SSE4.1, SSE4.2Download
1.9.0CPUUbuntu 16.045.43.5.2FMA, AVX, AVX2, SSE4.1, SSE4.2Download
1.9.0CPUUbuntu 16.045.42.7.12FMA, AVX, AVX2, SSE4.1, SSE4.2Download
1.9.0CPUUbuntu 18.047.33.6.5FMA, AVX, AVX2, SSE4.1, SSE4.2Download
1.10.0CPUUbuntu 18.047.33.6.5FMA, AVX, AVX2, SSE4.1, SSE4.2Download
1.10.0CPUUbuntu 18.047.32.7.15rc1FMA, AVX, AVX2, SSE4.1, SSE4.2Download

下载后得到 tensorflow-1.9.0-cp36-cp36m-linux_x86_64.whl 类似的文件,然后直接在对应的环境中:

pip install tensorflow-1.9.0-cp36-cp36m-linux_x86_64.whl

或者:

conda install tensorflow-1.9.0-cp36-cp36m-linux_x86_64.whl

然后再运行项目,AVX 相关的警告就消失了,而且模型训练和测试速度应该有大幅提升。

(2)windows 编译

github 地址:https://github.com/fo40225/tensorflow-windows-wheel

方法同上,找到对应的版本 pip install 或者conda install 即可

 

这篇关于Tensorflow针对CPU的编译优化加速-解决Not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101106

相关文章

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

解决Entity Framework中自增主键的问题

《解决EntityFramework中自增主键的问题》:本文主要介绍解决EntityFramework中自增主键的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录Entity Framework中自增主键问题解决办法1解决办法2解决办法3总结Entity Fram

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1