【DRAM存储器三十九】LPDDR4/DDR4的时序训练相关内容之读方向的训练

本文主要是介绍【DRAM存储器三十九】LPDDR4/DDR4的时序训练相关内容之读方向的训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

👉个人主页:highman110

👉作者简介:一名硬件工程师,持续学习,不断记录,保持思考,输出干货内容 

参考资料:《镁光LPDDR4数据手册》 、《JESD209-4B》

        跟写操作一样,一切跟读相关的训练都可以归结为read leveling,包括如下内容:

read DQS gate training

        我们知道控制器读DDR的时候,DQS和DQ都是

这篇关于【DRAM存储器三十九】LPDDR4/DDR4的时序训练相关内容之读方向的训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100879

相关文章

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

log4j2相关配置说明以及${sys:catalina.home}应用

${sys:catalina.home} 等价于 System.getProperty("catalina.home") 就是Tomcat的根目录:  C:\apache-tomcat-7.0.77 <PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" /> 2017-08-10

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

Node Linux相关安装

下载经编译好的文件cd /optwget https://nodejs.org/dist/v10.15.3/node-v10.15.3-linux-x64.tar.gztar -xvf node-v10.15.3-linux-x64.tar.gzln -s /opt/node-v10.15.3-linux-x64/bin/npm /usr/local/bin/ln -s /opt/nod

git ssh key相关

step1、进入.ssh文件夹   (windows下 下载git客户端)   cd ~/.ssh(windows mkdir ~/.ssh) step2、配置name和email git config --global user.name "你的名称"git config --global user.email "你的邮箱" step3、生成key ssh-keygen

嵌入式方向的毕业生,找工作很迷茫

一个应届硕士生的问题: 虽然我明白想成为技术大牛需要日积月累的磨练,但我总感觉自己学习方法或者哪些方面有问题,时间一天天过去,自己也每天不停学习,但总感觉自己没有想象中那样进步,总感觉找不到一个很清晰的学习规划……眼看 9 月份就要参加秋招了,我想毕业了去大城市磨练几年,涨涨见识,拓开眼界多学点东西。但是感觉自己的实力还是很不够,内心慌得不行,总怕浪费了这人生唯一的校招机会,当然我也明白,毕业

zookeeper相关面试题

zk的数据同步原理?zk的集群会出现脑裂的问题吗?zk的watch机制实现原理?zk是如何保证一致性的?zk的快速选举leader原理?zk的典型应用场景zk中一个客户端修改了数据之后,其他客户端能够马上获取到最新的数据吗?zk对事物的支持? 1. zk的数据同步原理? zk的数据同步过程中,通过以下三个参数来选择对应的数据同步方式 peerLastZxid:Learner服务器(Follo

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多