大数据技术之_09_Flume学习_Flume概述+Flume快速入门+Flume企业开发案例+Flume监控之Ganglia+Flume高级之自定义MySQLSource+Flume企业真实面试题

本文主要是介绍大数据技术之_09_Flume学习_Flume概述+Flume快速入门+Flume企业开发案例+Flume监控之Ganglia+Flume高级之自定义MySQLSource+Flume企业真实面试题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据技术之_09_Flume学习

    • 第1章 Flume概述
      • 1.1 Flume定义
      • 1.2 Flume组成架构
        • 1.2.1 Agent
        • 1.2.2 Source
        • 1.2.3 Channel
        • 1.2.4 Sink
        • 1.2.5 Event
      • 1.3 Flume拓扑结构
      • 1.4 Flume Agent内部原理
      • 1.5 Hadoop三大发行版本
    • 第2章 Flume快速入门
      • 2.1 Flume安装地址
      • 2.2 安装部署
    • 第3章 Flume企业开发案例
      • 3.1 监控端口数据官方案例
      • 3.2 实时读取本地文件到HDFS案例
      • 3.3 实时读取目录文件到HDFS案例
      • 3.4 单数据源多出口案例(选择器)
      • 3.5 单数据源多出口案例(Sink组)
      • 3.6 多数据源汇总案例
    • 第4章 Flume监控之Ganglia
      • 4.1 Ganglia的安装与部署
      • 4.2 操作Flume测试监控
    • 第5章 Flume高级之自定义MySQLSource
      • 5.1 自定义Source说明
      • 5.2 自定义MySQLSource组成
      • 5.3 自定义MySQLSource步骤
      • 5.4 代码实现
        • 5.4.1 导入pom依赖
        • 5.4.2 添加配置信息
        • 5.4.3 SQLSourceHelper
        • 5.4.4 MySQLSource
      • 5.5 测试
        • 5.5.1 Jar包准备
        • 5.5.2 配置文件准备
        • 5.5.3 MySql表准备
        • 5.5.4测试并查看结果
    • 第6章 知识扩展
      • 6.1 常见正则表达式语法
      • 6.2 练习
    • 第7章 Flume企业真实面试题(重点)
      • 7.1 你是如何实现Flume数据传输的监控的?
      • 7.2 Flume的Source,Sink,Channel的作用?你们Source是什么类型?
      • 7.3 Flume的Channel Selectors
      • 7.4 Flume参数调优
      • 7.5 Flume的事务机制
      • 7.6 Flume采集数据会丢失吗?

第1章 Flume概述

1.1 Flume定义

  Flume(水槽) 是 Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。
  在2009年Flume被捐赠了apache软件基金会,为hadoop相关组件之一。尤其近几年随着flume的不断被完善以及升级版本的逐一推出,特别是flume-ng;,同时flume内部的各种组件不断丰富,用户在开发的过程中使用的便利性得到很大的改善,现已成为apache top项目之一。
[外链图片转存失败(img-XeAAyrvN-1562054694038)(https://s2.ax1x.com/2019/03/04/kORqI0.png)]

1.2 Flume组成架构

  Flume组成架构如下图所示:
[外链图片转存失败(img-TVd79g1W-1562054694038)(https://s2.ax1x.com/2019/03/04/kORHZn.png)]
Flume组成架构
[外链图片转存失败(img-woLeztfP-1562054694038)(https://s2.ax1x.com/2019/03/04/kORTqs.png)]

下面我们来详细介绍一下Flume架构中的组件。

1.2.1 Agent

  Agent是一个JVM进程,它以事件的形式将数据从源头送至目的地,是Flume数据传输的基本单元
  Agent主要有3个部分组成,Source、Channel、Sink。

1.2.2 Source

  Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec(Linux命令)、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。

1.2.3 Channel

  Channel是位于Source和Sink之间的缓冲区。因此,Channel允许Source和Sink运作在不同的速率上。Channel是线程安全的,可以同时处理几个Source的写入操作和几个Sink的读取操作。
  Flume自带两种Channel:Memory Channel 和 File Channel。
  Memory Channel是内存中的队列Memory Channel 在不需要关心数据丢失的情景下适用。如果需要关心数据丢失,那么Memory Channel就不应该使用,因为程序死亡、机器宕机或者重启都会导致数据丢失。
  File Channel将所有事件写到磁盘。因此在程序关闭或机器宕机的情况下不会丢失数据。

1.2.4 Sink

  Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent
  Sink是完全事务性的。在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink就利用Channel提交事务。事务一旦被提交,该Channel从自己的内部缓冲区删除事件。
  Sink组件目的地包括hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。

1.2.5 Event

  传输单元,Flume数据传输的基本单元,以事件的形式将数据从源头送至目的地。

1.3 Flume拓扑结构

Flume的拓扑结构如下图所示:
Flume Agent连接
[外链图片转存失败(img-lQZqJUub-1562054694038)(https://s2.ax1x.com/2019/03/04/kOROiV.png)]
单source,多channel、sink
[外链图片转存失败(img-Zw709GrE-1562054694038)(https://s2.ax1x.com/2019/03/04/kORbaq.png)]
Flume负载均衡
[外链图片转存失败(img-OcYDd5GH-1562054694038)(https://s2.ax1x.com/2019/03/04/kORXGT.png)]
Flume Agent聚合
[外链图片转存失败(img-BngGFhVg-1562054694039)(https://s2.ax1x.com/2019/03/04/kORjRU.png)]

1.4 Flume Agent内部原理

[外链图片转存失败(img-vJlUS8Xk-1562054694039)(https://s2.ax1x.com/2019/03/04/kORzM4.png)]

1.5 Hadoop三大发行版本

  • Hadoop(哈道普)三大发行版本:Apache、Cloudera、Hortonworks。
      Apache 版本最原始(最基础)的版本,对于入门学习最好。
      Cloudera 在大型互联网企业中用的较多。(简称:CDH版,收费)
      Hortonworks 文档较好。

  • 1、Apache Hadoop
    官网地址:http://hadoop.apache.org/releases.html
    下载地址:https://archive.apache.org/dist/hadoop/common/

  • 2、Cloudera Hadoop
    官网地址:https://www.cloudera.com/downloads/cdh/5-10-0.html
    下载地址:http://archive-primary.cloudera.com/cdh5/cdh/5/

    • (1)2008年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要是包括支持、咨询服务、培训。
    • (2)2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH,Cloudera Manager,Cloudera Support。
    • (3)CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强。
    • (4)Cloudera Manager是集群的软件分发及管理监控平台,可以在几个小时内部署好一个Hadoop集群,并对集群的节点及服务进行实时监控。Cloudera Support即是对Hadoop的技术支持。
    • (5)Cloudera的标价为每年每个节点4000美元。Cloudera开发并贡献了可实时处理大数据的Impala项目。
  • 3、Hortonworks Hadoop
    官网地址:https://hortonworks.com/products/data-center/hdp/
    下载地址:https://hortonworks.com/downloads/#data-platform

    • (1)2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。
    • (2)公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop80%的代码。
    • (3)雅虎工程副总裁、雅虎Hadoop开发团队负责人Eric Baldeschwieler出任Hortonworks的首席执行官。
    • (4)Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。
    • (5)HCatalog,一个元数据管理系统,HCatalog现已集成到Facebook开源的Hive中。Hortonworks的Stinger开创性的极大的优化了Hive项目。Hortonworks为入门提供了一个非常好的,易于使用的沙盒。
    • (6)Hortonworks开发了很多增强特性并提交至核心主干,这使得Apache Hadoop能够在包括Window Server和Windows Azure在内的Microsoft Windows平台上本地运行。定价以集群为基础,每10个节点每年为12500美元。

第2章 Flume快速入门

2.1 Flume安装地址

1) Flume官网地址
  http://flume.apache.org/
2)文档查看地址
  http://flume.apache.org/FlumeUserGuide.html
3)下载地址
  http://archive.apache.org/dist/flume/

2.2 安装部署

1)将apache-flume-1.7.0-bin.tar.gz上传到linux的/opt/software目录下
2)解压apache-flume-1.7.0-bin.tar.gz到/opt/module/目录下

[atguigu@hadoop102 software]$ tar -zxf apache-flume-1.7.0-bin.tar.gz -C /opt/module/

3)修改apache-flume-1.7.0-bin的名称为flume

[atguigu@hadoop102 module]$ mv apache-flume-1.7.0-bin flume

4)将flume/conf下的flume-env.sh.template文件修改为flume-env.sh,并配置flume-env.sh文件

[atguigu@hadoop102 conf]$ mv flume-env.sh.template flume-env.sh
[atguigu@hadoop102 conf]$ vim flume-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144

第3章 Flume企业开发案例

3.1 监控端口数据官方案例

1)案例需求:首先,Flume监控本机44444端口,然后通过telnet工具向本机44444端口发送消息,最后Flume将监听的数据实时显示在控制台。
2)需求分析:
[外链图片转存失败(img-2OYP9xqZ-1562054694039)(https://s2.ax1x.com/2019/03/04/kOWSsJ.png)]
3)实现步骤:
1.安装telnet工具
将rpm软件包(xinetd-2.3.14-40.el6.x86_64.rpm、telnet-0.17-48.el6.x86_64.rpm和telnet-server-0.17-48.el6.x86_64.rpm)拷入/opt/software文件夹下面。执行RPM软件包安装命令:

[atguigu@hadoop102 software]$ sudo rpm -ivh xinetd-2.3.14-40.el6.x86_64.rpm
[atguigu@hadoop102 software]$ sudo rpm -ivh telnet-0.17-48.el6.x86_64.rpm
[atguigu@hadoop102 software]$ sudo rpm -ivh telnet-server-0.17-48.el6.x86_64.rpm

2.判断44444端口是否被占用

[atguigu@hadoop102 flume-telnet]$ sudo netstat -tunlp | grep 44444

功能描述:netstat命令是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表、实际的网络连接以及每一个网络接口设备的状态信息。
基本语法:netstat [选项]
选项参数:
  -t或–tcp:显示TCP传输协议的连线状况;
  -u或–udp:显示UDP传输协议的连线状况;
  -n或–numeric:直接使用ip地址,而不通过域名服务器;
  -l或–listening:显示监控中的服务器的Socket;
  -p或–programs:显示正在使用Socket的程序识别码和程序名称;
3.创建Flume Agent配置文件flume-telnet-logger.conf
在flume目录下创建job文件夹并进入job文件夹。

[atguigu@hadoop102 flume]$ pwd
/opt/module/flume
[atguigu@hadoop102 flume]$ mkdir job
[atguigu@hadoop102 flume]$ cd job/

在job文件夹下创建Flume Agent配置文件flume-telnet-logger.conf

[atguigu@hadoop102 job]$ touch flume-telnet-logger.conf

在flume-telnet-logger.conf文件中添加如下内容:

[atguigu@hadoop102 job]$ vim flume-telnet-logger.conf

添加内容如下:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444# Describe the sink
a1.sinks.k1.type = logger# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

注:配置文件来源于官方手册:http://flume.apache.org/FlumeUserGuide.html
[外链图片转存失败(img-jGp0Ma8q-1562054694039)(https://s2.ax1x.com/2019/03/04/kORvzF.png)]
4. 先开启flume监听端口

[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-telnet-logger.conf -Dflume.root.logger=INFO,console

参数说明:
  --conf conf/ :表示配置文件存储在conf/目录
  --name a1 :表示给agent起名为a1(要与配置文件一致)
  --conf-file job/flume-telnet.conf :flume本次启动读取的配置文件是在job文件夹下的flume-telnet.conf文件
  -Dflume.root.logger==INFO,console :-D表示flume运行时动态修改flume.root.logger参数属性值,并将控制台日志打印级别设置为INFO级别。日志级别包括:log、info、warn、error
5.使用telnet工具向本机的44444端口发送内容

[atguigu@hadoop102 ~]$ telnet localhost 44444

如下图所示:

6.在Flume监听页面观察接收数据情况
[外链图片转存失败(img-t2q8SNul-1562054694040)(https://s2.ax1x.com/2019/03/04/kOWpL9.png)]

3.2 实时读取本地文件到HDFS案例

1)案例需求:实时监控Hive日志,并上传到HDFS中。(实际开发中是tomcat中产生的日志:订单日志、点击流日志等)
2)需求分析:
[外链图片转存失败(img-BRDGmJjI-1562054694040)(https://s2.ax1x.com/2019/03/04/kOWPd1.png)]
3)实现步骤:
1.Flume要想将数据输出到HDFS,必须持有Hadoop相关jar包

将
commons-configuration-1.6.jar
hadoop-auth-2.7.2.jar
hadoop-common-2.7.2.jar
hadoop-hdfs-2.7.2.jar
commons-io-2.4.jar
htrace-core-3.1.0-incubating.jar

拷贝到/opt/module/flume/lib文件夹下。
2.创建flume-file-hdfs.conf文件
创建文件

[atguigu@hadoop102 job]$ touch flume-file-hdfs.conf

注:要想读取Linux系统中的文件,就得按照Linux命令的规则执行命令。由于Hive日志在Linux系统中,所以读取文件的类型选择:exec即execute执行的意思。表示执行Linux命令来读取文件。

[atguigu@hadoop102 job]$ vim flume-file-hdfs.conf

添加如下内容:

# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
a2.sources.r2.shell = /bin/bash -c# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hadoop102:9000/flume/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k2.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k2.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a2.sinks.k2.hdfs.batchSize = 1000
#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 600
#设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a2.sinks.k2.hdfs.rollCount = 0
#最小冗余数
a2.sinks.k2.hdfs.minBlockReplicas = 1# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2

配置文件解析:
[外链图片转存失败(img-wXxbIa3g-1562054694040)(https://s2.ax1x.com/2019/03/04/kOWCZR.png)]
3.执行监控配置

[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/flume-file-hdfs.conf

4.开启Hadoop和Hive并操作Hive产生日志

[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh
[atguigu@hadoop102 hive]$ bin/hive
hive (default)>

5.在HDFS上查看文件。
[外链图片转存失败(img-LeKTjwLW-1562054694040)(https://s2.ax1x.com/2019/03/04/kOWki6.png)]

3.3 实时读取目录文件到HDFS案例

1)案例需求:使用Flume监听整个目录的文件。
2)需求分析:
[外链图片转存失败(img-XkOD5hha-1562054694041)(https://s2.ax1x.com/2019/03/04/kOWVzD.png)]
3)实现步骤:
1.创建配置文件flume-dir-hdfs.conf
创建一个文件

[atguigu@hadoop102 job]$ touch flume-dir-hdfs.conf

打开文件

[atguigu@hadoop102 job]$ vim flume-dir-hdfs.conf

添加如下内容:

# Name the components on this agent
a3.sources = r3
a3.sinks = k3
a3.channels = c3# Describe/configure the source
a3.sources.r3.type = spooldir
a3.sources.r3.spoolDir = /opt/module/flume/upload
a3.sources.r3.fileSuffix = .COMPLETED
a3.sources.r3.fileHeader = true
#忽略所有以.tmp结尾的文件,不上传
a3.sources.r3.ignorePattern = ([^ ]*\.tmp)# Describe the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://hadoop102:9000/flume/upload/%Y%m%d/%H
#上传文件的前缀
a3.sinks.k3.hdfs.filePrefix = upload-
#是否按照时间滚动文件夹
a3.sinks.k3.hdfs.round = true
#多少时间单位创建一个新的文件夹
a3.sinks.k3.hdfs.roundValue = 1
#重新定义时间单位
a3.sinks.k3.hdfs.roundUnit = hour
#是否使用本地时间戳
a3.sinks.k3.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a3.sinks.k3.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a3.sinks.k3.hdfs.fileType = DataStream
#多久生成一个新的文件
a3.sinks.k3.hdfs.rollInterval = 600
#设置每个文件的滚动大小大概是128M
a3.sinks.k3.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a3.sinks.k3.hdfs.rollCount = 0
#最小冗余数
a3.sinks.k3.hdfs.minBlockReplicas = 1# Use a channel which buffers events in memory
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3

配置文件解析:
[外链图片转存失败(img-FZ7Qmgbd-1562054694042)(https://s2.ax1x.com/2019/03/04/kOWiIx.png)]
2. 启动监控文件夹命令

[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-dir-hdfs.conf

说明: 在使用Spooling Directory Source时
  1) 不要在监控目录中创建并持续修改文件
  2) 上传完成的文件会以.COMPLETED结尾
  3) 被监控文件夹每500毫秒扫描一次文件变动
3. 向upload文件夹中添加文件
在/opt/module/flume目录下创建upload文件夹

[atguigu@hadoop102 flume]$ mkdir upload

向upload文件夹中添加文件

[atguigu@hadoop102 upload]$ touch atguigu.txt
[atguigu@hadoop102 upload]$ touch atguigu.tmp
[atguigu@hadoop102 upload]$ touch atguigu.log

查看数据
5. 查看HDFS上的数据
[外链图片转存失败(img-FGVhOu3e-1562054694042)(https://s2.ax1x.com/2019/03/04/kOWmsH.png)]
6. 等待1s,再次查询upload文件夹

[atguigu@hadoop102 upload]$ pwd
/opt/module/flume/upload
[atguigu@hadoop102 upload]$ ll
总用量 0
-rw-rw-r--. 1 atguigu atguigu 0 3月   4 00:09 atguigu.log.COMPLETED
-rw-rw-r--. 1 atguigu atguigu 0 3月   4 00:09 atguigu.tmp
-rw-rw-r--. 1 atguigu atguigu 0 3月   4 00:09 atguigu.txt.COMPLETED

3.4 单数据源多出口案例(选择器)

单Source多Channel、Sink,如下图所示:
[外链图片转存失败(img-cqpSQBpC-1562054694042)(https://s2.ax1x.com/2019/03/04/kOWAJK.png)]
1)案例需求:使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3负责输出到Local FileSystem。
2)需求分析:
[外链图片转存失败(img-vGZ2E4DS-1562054694042)(https://s2.ax1x.com/2019/03/04/kOWeQe.png)]
3)实现步骤:
0.准备工作
在/opt/module/flume/job目录下创建group1文件夹

[atguigu@hadoop102 job]$ mkdir group1
[atguigu@hadoop102 job]$ cd group1/

在/opt/module/datas/目录下创建flume3文件夹

[atguigu@hadoop102 datas]$ mkdir flume3

1.创建flume-file-flume.conf
配置1个接收日志文件的source和2个channel、2个sink,分别输送给flume-flume-hdfs和flume-flume-dir。
创建配置文件并打开:

[atguigu@hadoop102 group1]$ touch flume-file-flume.conf
[atguigu@hadoop102 group1]$ vim flume-file-flume.conf

添加如下内容:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给所有channel
a1.sources.r1.selector.type = replicating# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log
a1.sources.r1.shell = /bin/bash -c# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102 
a1.sinks.k1.port = 4141a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 4142# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

注:Avro是由Hadoop创始人Doug Cutting创建的一种跟语言无关的数据序列化和RPC框架。
注:RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。
2.创建flume-flume-hdfs.conf
配置上级Flume输出的Source,输出是到HDFS的Sink。
创建配置文件并打开

[atguigu@hadoop102 group1]$ touch flume-flume-hdfs.conf
[atguigu@hadoop102 group1]$ vim flume-flume-hdfs.conf

添加如下内容:

# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1# Describe/configure the source
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 4141# Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://hadoop102:9000/flume2/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval = 600
#设置每个文件的滚动大小大概是128M
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a2.sinks.k1.hdfs.rollCount = 0
#最小冗余数
a2.sinks.k1.hdfs.minBlockReplicas = 1# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

3.创建flume-flume-dir.conf
配置上级Flume输出的Source,输出是到本地目录的Sink。
创建配置文件并打开

[atguigu@hadoop102 group1]$ touch flume-flume-dir.conf
[atguigu@hadoop102 group1]$ vim flume-flume-dir.conf

添加如下内容:

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 4142# Describe the sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /opt/module/datas/flume3# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2

提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。
4.执行配置文件
分别开启对应配置文件:flume-flume-dir,flume-flume-hdfs,flume-file-flume。

[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group1/flume-flume-dir.conf[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group1/flume-flume-hdfs.conf[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group1/flume-file-flume.conf

5.启动Hadoop和Hive

[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh[atguigu@hadoop102 hive]$ bin/hive
hive (default)>

6.检查HDFS上数据
[外链图片转存失败(img-STgpItgZ-1562054694042)(https://s2.ax1x.com/2019/03/04/kOWnLd.png)]
7. 检查/opt/module/datas/flume3目录中数据

[atguigu@hadoop102 flume3]$ pwd
/opt/module/datas/flume3
[atguigu@hadoop102 flume3]$ ll
总用量 4
-rw-rw-r--. 1 atguigu atguigu    0 3月   4 01:01 1551632490229-1
-rw-rw-r--. 1 atguigu atguigu 1594 3月   4 01:02 1551632490229-2
[atguigu@hadoop102 flume3]$ ll
总用量 4
-rw-rw-r--. 1 atguigu atguigu    0 3月   4 01:01 1551632490229-1
-rw-rw-r--. 1 atguigu atguigu 3808 3月   4 01:02 1551632490229-2
-rw-rw-r--. 1 atguigu atguigu    0 3月   4 01:02 1551632490229-3
[atguigu@hadoop102 flume3]$ ll
总用量 8
-rw-rw-r--. 1 atguigu atguigu    0 3月   4 01:01 1551632490229-1
-rw-rw-r--. 1 atguigu atguigu 3808 3月   4 01:02 1551632490229-2
-rw-rw-r--. 1 atguigu atguigu  538 3月   4 01:02 1551632490229-3
-rw-rw-r--. 1 atguigu atguigu    0 3月   4 01:03 1551632490229-4
-rw-rw-r--. 1 atguigu atguigu    0 3月   4 01:03 1551632490229-5

3.5 单数据源多出口案例(Sink组)

单Source、Channel多Sink(负载均衡),如下图所示。
[外链图片转存失败(img-6WgVOm5D-1562054694042)(

这篇关于大数据技术之_09_Flume学习_Flume概述+Flume快速入门+Flume企业开发案例+Flume监控之Ganglia+Flume高级之自定义MySQLSource+Flume企业真实面试题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100810

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD