【数据结构】二叉树顺序结构之堆的实现

2024-08-23 23:20

本文主要是介绍【数据结构】二叉树顺序结构之堆的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言 

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

2. 堆的概念及结构

堆是一种特殊的数据结构,简单理解,它能将所有元素按完全二叉树的顺序存储方式存储
在一个一维数组中,堆可以分为大堆小堆两种形式。

将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

①:堆的父节点的值总是大于或等于其子节点的值(大顶堆)或者小于或等于其子节点的值(小顶堆)。
②:堆是完全二叉树,即除了最底层外,其他层的节点都是满的,并且最底层的节点都尽量靠左排列。

如下图所示就是大堆和小堆的逻辑结构和存储结构啦~ 

3. 堆的实现

下文以大堆为例,接下来我们一起来学习如何实现堆的结构

3.1 准备工作

还是像往常一样,我们将队列其拆分为不同的文件进行设计

1️⃣:Heap.h 文件,用于函数声明

2️⃣:Heap.c 文件,用于函数的定义

3️⃣:Test.c   文件,用于测试函数

3.2 结构体的定义

堆的物理本质是一个数组,就可以像动态顺序表一样进行结构定义。

typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size; // 有效元素个数int capacity; // 数组长度
}HP;

3.3 堆的初始化

初始化有两种方式:
① 初始化时我们可以为数组开辟一定大小空间。

② 我们也可以直接将数组指针先置为空指针,插入数据过程中在进一步处理。

代码如下:我们采用的是第二种实现方式

void HeapInit(HP* php)
{assert(php);php->a = NULL;php->size = php->capacity = 0;
}

   

3.4 堆的销毁

顺序表空间连续,所以只要free(首地址)就可以。

注意:不能忘记 hp->capacity = hp->size = 0;

代码如下:

void HPDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}

 3.5 堆的插入

① 在插入数据前,我们首先要判断是否要扩容的问题。由于前面初始化时我们直接置空,所以我们先判断容量是否为空。如果为空开4个空间,否则空间扩大到原来的2倍。为空时,第一次具体开辟多少空间读者可自行选择,我们默认开辟4个字节
② 接下来就是插入数据了!但有一个问题,直接插入数据可能会破坏堆的结构,所以我们采用了向上调整算法。

实现代码如下: 

void HPPush(HP* php, HPDataType x)
{assert(php);// 判断扩容if (php->size == php->capacity){// 扩容size_t newcapacity = ph->capacity == 0 ? 4 : 2 * php->capacity;HPDataType* tmp = realloc(php->a, newcapacity * sizeof(HPDataType));if (tmp == NULL){// 扩容失败printf("realloc fail\n");exit(-1);}php->capacity = newcapacity;php->a = tmp;}// 数组尾插数据php->a[php->size++] = x;// 向上调整// 参数: 堆数组,插入位置下标AdjustUp(php->a, php->size - 1);
}

3.5.1 向上调整算法

当我们在一个堆的末尾插入一个数据后,需要对堆进行调整,使其仍然是一个堆,

这时需要用到堆的向上调整算法。

向上调整算法的基本思想(以建小堆为例):

  1. 插入数据
  2. 与自己的父亲比较
  3. 交换/不交换
  4. 交换:孩子来到父亲位置,父亲来到自己父亲的位置
  5. 结束循环两个点:
  • 不交换(跳出循环)
  • 一直交换直到来到根节点>0

🌟Tips: 同学们需要记住父节点和孩子节点之间的数量关系

leftchild = parent *2 + 1  左孩子节点下标 = 父亲节点下标*2 + 1
rightchild = parent * 2 + 2  右孩子节点下标 = 父亲节点下标*2 + 2
parent = (child - 1) / 2   父亲节点下标 = (孩子节点下标 - 1)/ 2

如:

举个例子:

现在我们给出一个数组[70, 30, 56, 25, 15, 10],逻辑上就要把他看作一颗完全二叉树。

int array[] = {70, 30, 56, 25, 15, 10};

如果我们插入的是8,8是最小值,他就保证小堆结构不发生变化

如果我们插入的比堆顶元素小,比如插入60, 我们发现60比它的根节点56大,

这时我们就要使用向上调整算法,调到合适位置即可

父亲比孩子小,交换元素。 

 

如果插入元素比根节点大,比如插入80

  

  使用向上调整算法

   

继续调整

   

代码如下: 

// 向上调整算法  此处以大堆为例
void AdjustUp(HPDataType* a, int child)
{assert(a);int parent = (child - 1) / 2;// 结束条件如果是parent>=0,会进入到下一个循环通过break跳出while (child > 0) {if (a[parent] < a[child]){// 父亲结点值小于孩子结点Swap(&a[parent], &a[child]);child = parent;parent = (child - 1) / 2;}else{break;}}
}

 3.5.2 向上调整法时间复杂度计算

可得高度与向上调整的关系 F(h)=2^h*(h-2)+2

时间复杂度F(N)=(N+1)*(log(N+1)-2)+2

3.6 删除堆顶元素

     把堆尾元素放到堆顶元素,然后去除堆尾元素(这里直接size--),再向下调整即可。因为原本就是一个堆,现在堆顶元素变了,所以直接向下调整。

代码如下:

void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size-1]);php->size--;AdjustDown(php->a, php->size, 0);
}

3.6.1 向下调整算法

当从堆中移除元素(通常是堆顶元素)后,为了维护堆的性质,需要对剩余的元素进行重新调整。向下调整法就是从父节点开始,通过与其子节点的比较和交换,确保父节点的值不大于(对于大根堆)或不小于(对于小根堆)其子节点的值。

步骤:

1. 删除堆顶元素
2. 堆顶元素与最后一个元素交换
3. 删除最后一个元素
4. 堆顶元素与左右两个孩子(最小/最大的孩子比较)
5. 判断交换/不交换
6. 交换:父亲来到孩子位置,孩子来到自己孩子的位置

判断条件:child + 1 < n && a[child + 1] < a[child]

结束循环条件:child < n(确保左孩子存在)

时间复杂度:O(logN),其中N是堆中元素的数量。

因为每次调整都涉及沿着树的一条路径向下移动,而树的深度为logN。

那么如何删除堆顶数据后插入数据呢?🤔🤔

如果直接挪动覆盖:操作的时间复杂度太大,而且父子关系就全乱了,不如重新建堆

在这里,以调整为小堆为例,给大家讲解向下调整算法的过程

 代码如下:

// 向下调整算法,这里默认是调整成小堆
void AdjustDown(int* a, int n, int parent)
{assert(a);int child = parent * 2 + 1; // 默认是左孩子while (child < n){// 找出小孩子if (child + 1 < n && a[child + 1] < a[child]){++child;}// 如果小孩子比父亲小,则交换,继续调整if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

3.6.2 向下调整法的时间复杂度计算

可得高度与向下调整次数的关系 F(h)=2^{h}-h-1

可得时间复杂度:F(N) = N-log(N+1)

3.7 取堆顶元素

HPDataType HPTop(HP* php)
{assert(php);assert(php->size > 0);return php->a[0];
}

3.8 堆是否为空

bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;
}

4. 参考代码 (如果发现上面代码有误,以这里为准)

Heap.h

#pragma once
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>typedef int HPDataType;typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;void Swap(HPDataType* p1, HPDataType* p2);
void AdjustUp(HPDataType* a, int child);
void AdjustDown(HPDataType* a, int n, int parent);void HPInit(HP* php);
void HPDestroy(HP* php);
void HPPush(HP* php, HPDataType x);
void HPPop(HP* php);
HPDataType HPTop(HP* php);
bool HPEmpty(HP* php);

Heap.c

#include"Heap.h"void HPInit(HP* php)
{assert(php);php->a = NULL;php->size = php->capacity = 0;
}void HPDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}void AdjustUp(HPDataType* a, int child)
{// 初始条件// 中间过程// 结束条件int parent = (child - 1) / 2;//while (parent >= 0)while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}void HPPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, newcapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc fail");return;}php->a = tmp;php->capacity = newcapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}void AdjustDown(HPDataType* a, int n, int parent)
{// 先假设左孩子小int child = parent * 2 + 1;while (child < n)  // child >= n说明孩子不存在,调整到叶子了{// 找出小的那个孩子if (child + 1 < n && a[child + 1] < a[child]){++child;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}// logN
void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size-1]);php->size--;AdjustDown(php->a, php->size, 0);
}HPDataType HPTop(HP* php)
{assert(php);assert(php->size > 0);return php->a[0];
}bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}

Test.c

#include"Heap.h"void TestHeap1()
{int a[] = { 4,2,8,1,5,6,9,7,3,2,23,55,232,66,222,33,7,1,66,3333,999 };HP hp;HPInit(&hp);for (size_t i = 0; i < sizeof(a)/sizeof(int); i++){HPPush(&hp, a[i]);}int i = 0;while (!HPEmpty(&hp)){printf("%d ", HPTop(&hp));//a[i++] = HPTop(&hp);HPPop(&hp);}printf("\n");// 找出最大的前k个/*int k = 0;scanf("%d", &k);while (k--){printf("%d ", HPTop(&hp));HPPop(&hp);}printf("\n");*/HPDestroy(&hp);
}int main()
{TestHeap1();return 0;
}

以上就是这期博客的全部内容,

有同学们会有疑问:堆在实际问题的求解中有什么样的应用呢?

预知后事如何,请听下回分解,我们下期博客再来探讨~

希望这篇文章能给予你学习中一些帮助,如果有疑问的,欢迎在评论区与我讨论交流哦~

这篇关于【数据结构】二叉树顺序结构之堆的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100784

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)