亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别

2024-08-23 15:04

本文主要是介绍亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 逻辑回归
  • 实现手写数字识别
    • 训练模型
    • 测试模型
  • 总结

逻辑回归

逻辑回归(Logistic Regression)虽然是一种广泛使用的分类算法,但它通常更适用于二分类问题。然而,通过一些策略(如一对多分类,也称为OvR或One-vs-Rest),逻辑回归也可以被扩展到多分类问题,如手写数字识别(通常是0到9的10个类别)。

本篇我们就来尝试一下如何通过逻辑回归来实现手写数字识别

  1. 训练模型
  2. 测试模型

实现手写数字识别

训练模型

  1. 收集数据

在这里插入图片描述

  1. 读取图片

使用opencv处理图片,将图片的像素数值读取进来,并返回的是一个三维(高,宽,颜色)numpy数组:

 pip install opencv-python==3.4.11.45
import cv2
img = cv2.imread("digits.png")
  1. 转为灰度图

将图片转化为灰度图,从而让三维数组变成二位的数组:

grey = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  1. 处理图片信息

对图片进行处理:将其先垂直切分(横向)成50份,再将每一份水平切分(竖向)成100份,这样我们的每份图片的像素值都为20*20(训练的图片比较规范)共500个,比如:

在这里插入图片描述

import numpy as np
img_info = [np.hsplit(row,100) for row in np.vsplit(grey,50)]
  1. 装进array数组

将切分的每一份图片像素数据都装进array数组中:

x = np.array(img_info)
  1. 分隔训练集与测试集

将数据竖着分隔一半,一半作为训练集,一般作为测试集:

train_x = x[:,:50]
test_x = x[:,50:100]
  1. 调整数据结构

由于我们最后要将数据放在逻辑回归模型中训练,我们得将数据结构调整为适合逻辑回归算法训练的结构,那么我们就来改变每份图片数组的维度:reshape:

new_train_x = train_x.reshape(-1,400).astype(np.float32)
new_test_x = test_x.reshape(-1,400).astype(np.float32)
  1. Z-score标准化

逻辑回归算法进行手写数字识别时,对数据进行标准化是为了提高优化算法的收敛速度、提升模型的预测性能,并避免潜在的数值问题。将数据都进行表示话,避免参数的影响:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
fin_train = scaler.fit_transform(new_train_x)
fin_test = scaler.fit_transform(new_test_x)
  1. 分配标签

我们训练着那么多的数据,却没有给他们具体的类别标签(图像的实际值),因为我们之前的图像处理都是在寻找图像特征,但是并没有给他们一个具体对应的类别,只有空荡荡的特征,无法分类,所以我们得给切分的每份图片打上它们对应的标签:

k = np.arange(10)
train_y = np.repeat(k,250)
test_y = np.repeat(k,250)
train_y = train_y.ravel()
  1. 交叉验证

在逻辑回归的算法中,逻辑模型的参数中,有一参数为正则化强度C,越小的数值表示越强的正则化。我们要进行调参数,看看哪个惩罚因子最为合适,使模型拟合效果更好:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score#交叉验证选择较优的惩罚因子
scores = []
c_param_range = [0.01,0.1,1,10,100] #参数:一般常用的惩罚因子for i in c_param_range:lr = LogisticRegression(C = i,penalty='l2',solver='lbfgs',max_iter=1000,random_state=0)# C表示正则化强度,越小的数值表示越强的正则化。防止过拟合score = cross_val_score(lr,fin_train,train_y,cv=10,scoring='recall_macro')#交叉验证,将模型和数据集传入,对其进行划分,每份轮流作为测试集来测试模型。返回一个列表对象score_mean = sum(score)/len(score)scores.append(score_mean)
c_choose = c_parma[np.argmax(scores)] #argmax取出最大值的索引位置
  1. 训练模型
lr_model = LogisticRegression(C = c_choose,max_iter=1000,random_state=0)
lr_model.fit(fin_train,train_y)

测试模型

  1. 先用训练数据再次进入模型测试,查看他本身的模型训练效果怎么样:
from sklearn import metrics
train_predict = lr_model.predict(fin_train)
print(metrics.classification_report(train_y,train_predict))  #查看混淆矩阵
-------------------------------precision    recall  f1-score   support0       0.99      1.00      0.99       2501       0.98      1.00      0.99       2502       1.00      0.98      0.99       2503       0.98      0.98      0.98       2504       1.00      1.00      1.00       2505       0.98      0.98      0.98       2506       0.99      1.00      1.00       2507       0.98      0.99      0.98       2508       0.98      0.99      0.99       2509       0.99      0.97      0.98       250accuracy                           0.99      2500macro avg       0.99      0.99      0.99      2500
weighted avg       0.99      0.99      0.99      2500
  1. 再用分割的测试集来测试模型:
test_predict = lr_model.predict(fin_test)
print(metrics.classification_report(test_y,test_predict))
---------------------------precision    recall  f1-score   support0       0.95      0.96      0.95       2501       0.94      0.96      0.95       2502       0.88      0.86      0.87       2503       0.90      0.86      0.88       2504       0.92      0.84      0.88       2505       0.84      0.90      0.87       2506       0.92      0.95      0.93       2507       0.89      0.93      0.91       2508       0.89      0.84      0.86       2509       0.83      0.86      0.85       250accuracy                           0.90      2500macro avg       0.90      0.90      0.89      2500
weighted avg       0.90      0.90      0.89      2500

到这为止!!我们就训练好一个关于手写数字识别的逻辑回归模型啦!!

总结

本篇介绍了如何用逻辑回归算法实现手写数字识别:

  1. 逻辑回归更适合二分类算法,但是也可以通过一些策略,扩展到多分类问题。
  2. 注意要将读取的数据进行标准化操作,灰度图图片数据相差过大。
  3. 学会调整参数,优化模型,比如本篇在交叉验证中找寻最优的惩罚因子。

这篇关于亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099719

相关文章

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

Python3脚本实现Excel与TXT的智能转换

《Python3脚本实现Excel与TXT的智能转换》在数据处理的日常工作中,我们经常需要将Excel中的结构化数据转换为其他格式,本文将使用Python3实现Excel与TXT的智能转换,需要的可以... 目录场景应用:为什么需要这种转换技术解析:代码实现详解核心代码展示改进点说明实战演练:从Excel到

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

C# string转unicode字符的实现

《C#string转unicode字符的实现》本文主要介绍了C#string转unicode字符的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录1. 获取字符串中每个字符的 Unicode 值示例代码:输出:2. 将 Unicode 值格式化

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Java中将异步调用转为同步的五种实现方法

《Java中将异步调用转为同步的五种实现方法》本文介绍了将异步调用转为同步阻塞模式的五种方法:wait/notify、ReentrantLock+Condition、Future、CountDownL... 目录异步与同步的核心区别方法一:使用wait/notify + synchronized代码示例关键

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配